时序行为检测是指在一段未分割的长视频中,检测出其中包含的若干行为片段的起止时间和类别.针对该项任务,提出基于双流卷积神经网络的行为检测模型.首先使用双流卷积神经网络提取视频的特征序列,然后使用TAG (Temporal Actionness Grouping)生成行为提议,为了构建高质量的行为提议,将行为提议送入边界回归网络中修正边界,使之更为贴近真实数据,再将行为提议扩展为含有上下文信息的三段式特征设计,最后使用多层感知机对行为进行识别.实验结果表明,本算法在THUMOS 2014数据集和ActivityNet v1.3数据集获得较好的识别率.
1
人体行为识别概述,特别适合文献综述,和总体的了解
2021-12-23 21:19:45 1.47MB 人体行为识别
1
基于深度学习的人体行为识别综述
2021-12-23 21:13:50 1.2MB 研究论文
1
运动人体检测和行为识别涉及广泛,包括人工智能、计算机视觉、模式识别等,人体行为识别在医疗、商业、军事中具有重要的应用价值,为探究良好的人体行为识别方法,本文引入傅里叶-隐马尔可夫模型进行相关分析,在人体行为序列图像的识别过程中,需要了解有关人体行为二值图像的轮廓,然后采取科学的方式进行傅里叶变换,接着进行向量转化,形成观察符号序列,将矢量量化向特征向量变化,便于提取人体轮廓的特征,进行后续的应用研究。最后对人体的行为进行识别,采用隐马尔大夫分类器。利用傅里叶-隐马尔科夫模型进行人体识别,能够有效提高人体行为识别率,本次测试单个行为的识别中平均识别率达到94%,要进行深入探究,进行复杂环境复杂动作的识别,促进相关工作的改进。
1
该课题为基于Matlab的异常行为检测。应用场景比如说,我国农村的空巢老人子女常年在外打工。而目前的监控属于被动式的监控,我们仅仅只能查看并且回放监控,不能对监控里面的某种信息作出判断和预警。该课题利用Matlab对监控中的画面的人体行为做一些监测和判别,一旦检测到有某些异常行为,比如说快跑慢跑跌倒等等作出提示,从而避免一些事故的发生,属于主动监控该设计,具有人际交互界面,需要具备一定编程基础的人员学习。
2021-12-05 22:03:37 8.72MB matlab
1
该课题为基于Matlab的异常行为检测。应用场景比如说,我国农村的空巢老人子女常年在外打工。而目前的监控属于被动式的监控,我们仅仅只能查看并且回放监控,不能对监控里面的某种信息作出判断和预警。该课题利用Matlab对监控中的画面的人体行为做一些监测和判别,一旦检测到有某些异常行为,比如说快跑慢跑跌倒等等作出提示,从而避免一些事故的发生,属于主动监控该设计,具有人际交互界面,需要具备一定编程基础的人员学习。
2021-12-04 11:04:52 8.72MB matlab
1
该课题为基于Matlab的异常行为检测。应用场景比如说,我国农村的空巢老人子女常年在外打工。而目前的监控属于被动式的监控,我们仅仅只能查看并且回放监控,不能对监控里面的某种信息作出判断和预警。该课题利用Matlab对监控中的画面的人体行为做一些监测和判别,一旦检测到有某些异常行为,比如说快跑慢跑跌倒等等作出提示,从而避免一些事故的发生,属于主动监控该设计,具有人际交互界面,需要具备一定编程基础的人员学习。
2021-11-24 09:03:34 8.74MB matlab
1
近年来随着信息科学和传感器技术的进步,基 于传感器的行为识别获得了极大的发展,其中基于 可穿戴传感器的人体行为识别具 有 极 其 广 泛 的 应 用前景。例如在智能家居、老人或病人监护等领域 使用可穿戴式传感器可以实时获 得 用 户 的 行 为 数 据,从而快速准确的判断出当前用户的活动情况。 文[1]中使用在右脚踝和左大腿固定两个加速 度传感器 采 集 数 据 来 研 究 人 体 行 为 识 别 方 法;文 [2]提出一种在人体不同位置固定多个加速度传感 器来进行老年人跌倒检测;文[3]采用将两个加速 度传感器分 别 佩 戴 在 右 手 臂 的 前后来解决交互式 游戏中的上肢动作识别问题。这些研究将多个传 感器固定在实验者身上来进行行为感知,在实际应 用中将给用户的生活带来不便。 目前智能手机的多种内置传感器如加速度传 感器、陀螺仪、磁力计、方向传感器等可以对不同的 运动、方向和外部环境进行感知,特别在监测设备 的移动和位置变化时,能获得较精确的原始三维数 据[4]。鉴于手机传感器的这种便携性和高性能,本 文提出一种 基 于 智 能 手 机 采 集 用户行为数据来进第19卷第6期 衡霞,王忠民:基于手机加速度传感器的人体行为识别 行行为识别与分析的方法。该 方 法 通 过 对 三 维 加 速度信号进行处理及特征提取获得特征矩阵,采用 支持向量机分类器进行分类识别。
1
该课题为基于Matlab的异常行为检测。应用场景比如说,我国农村的空巢老人子女常年在外打工。而目前的监控属于被动式的监控,我们仅仅只能查看并且回放监控,不能对监控里面的某种信息作出判断和预警。该课题利用Matlab对监控中的画面的人体行为做一些监测和判别,一旦检测到有某些异常行为,比如说快跑慢跑跌倒等等作出提示,从而避免一些事故的发生,属于主动监控该设计,具有人际交互界面,需要具备一定编程基础的人员学习。
2021-11-21 12:03:32 8.71MB matlab
1
一、课题介绍 本文设计了一款人体行为异常监控系统,主要适用人群是老年人,在摄像头固定的情况下,自动检测人体运动轨迹,并与提前设定好的行为库进行匹配,分析判断是否具有异常行为。 在数字图像预处理部分采用了图像二值化,腐蚀与膨胀等几种方法为人体目标的跟踪和检测做准备。为了克服在实际操作中遇到的问题,采用了帧差法和ViBe算法,帧差法即利用帧间变化与当前帧、背景算法来判断它是否大于阈值,并分析视频中序列的运动特性,ViBe算法则是一种背景建模的方法,背景模型是由邻域像素来创建,并对比背景模型、当前输入像素值检测出前景,确定视频中的目标跟踪。在人体行为识别中,运动目标最小长宽比以及连续帧间的加速度来判断人体行为是否异常,如果检测到异常的行为比如说摔倒、快跑等行为,在识别的过程这种实时监测。
1