相关博文请查看:https://blog.csdn.net/weixin_44044411/article/details/107969423,本视频为博主上传的,此博文的配套仿真视频
2024-09-19 13:59:55 3.97MB MPC 无人驾驶
1
Matlab研究室上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-09-12 09:39:15 2.67MB matlab
1
基于CodeFormer使用C++实现图片模糊变清晰,去除马赛克等效果(代码完整,内含项目所需依赖库文件和模型文件,不需要你再额外配置,真正的开箱即用)。 CodeFormer是一种基于AI技术深度学习的人脸复原模型,由南洋理工大学和商汤科技联合研究中心联合开发。该模型通过结合了VQGAN和Transformer等技术,可以通过提供模糊或马赛克图像来生成清晰的原始图像。可以实现老照片修复、照片马赛克修复、黑白照片彩色化、低码率视频增强,增加细节等效果。它采用了最先进神经网络AI技术,可以精准修复各种老旧、模糊、残缺、黑白的照片和视频,效果惊艳!感觉还是有两把刷子的,确实很强!被网友称为“地表最强AI马赛克去除神器”,感兴趣的朋友,快去试试吧。
2024-09-06 21:58:05 371.15MB 去除马赛克
1
在散斑去噪过程中保持图像边缘纹理特征,是光学相干层析图像处理技术的难题。散斑去噪过程中的散斑残留和边缘纹理模糊是该难题的主要诱导因素。为解决这一难题,提出一种基于剪切波变换的改进全变分散斑去噪方法。该方法结合剪切波变换和传统全变分模型,对不同图像区域采用针对性的去噪策略,兼顾散斑去噪与纹理保留,提高了光学相干层析图像的噪声抑制效果。对不同生理、病理状态下的视网膜光学相干层析图像进行测试,结果表明:该方法通过采用区域针对性策略改进了噪声抑制能力,通过引入剪切波变换方法提高了边缘纹理保持能力,进而同时实现散斑去除和纹理保留。此外,与其他散斑去噪方法进行对比,验证了该方法的有效性。
2024-09-05 11:01:21 8.53MB 图像处理 散斑去噪 边缘纹理 光学相干
1
直接在操作系统里就能修改网卡硬件mac地址,刷新网卡mac序列号硬件码机器码,电脑主板集成网卡,pcie网卡,usb有线网卡,usb无线网卡,英特尔网卡,瑞昱网卡全支持! 一键修改mac,非常简单!有随机修改,和手动修改功能。 压缩包里有视频教程和使用方法说明。使用环境win7 win10 win11 64位系统 解决局域网ip冲突问题,维修师傅更换网卡芯片,mac序列号恢复,网卡硬件维修必备神器!
2024-09-04 23:29:26 11.09MB macos
1
标题中的“three_SPWM控制_三相并网_光伏_三相并网逆变_逆变器_”指的是一个关于三相并网逆变器的SPWM(Sinusoidal Pulse Width Modulation,正弦脉宽调制)控制技术在光伏应用中的实施方案。这一技术对于理解和设计高效、可靠的光伏电力系统至关重要。 SPWM控制是一种广泛应用的调制方法,它通过改变脉冲宽度来模拟正弦波形,从而实现对交流输出电压的有效控制。在三相并网逆变器中,SPWM技术能够提供高质量的交流输出,降低谐波失真,并提高能效。这种控制策略使得逆变器可以与电网平滑连接,保证电力传输的稳定性和效率。 三相并网逆变器是将直流电转换为与电网同步的交流电的关键设备,尤其在太阳能发电系统中,逆变器的作用是将光伏电池板产生的直流电转化为电网可接受的交流电。光伏逆变器不仅需要处理功率转换,还需要具备并网功能,即能够自动调整自身的频率和电压以匹配电网参数,同时确保电网安全和稳定。 光伏系统中的SPWM控制策略通常包括以下几个关键环节: 1. **直流侧电压控制**:通过调节直流侧电压,确保逆变器在不同光照条件下都能稳定工作。 2. **电流控制**:通过SPWM算法生成控制信号,使逆变器输出的三相交流电流接近正弦波形,减少谐波含量。 3. **锁相环(PLL)技术**:用于检测电网电压相位,确保逆变器输出的电流与电网电压同相位,实现并网。 4. **保护机制**:包含过电压、过电流、短路等保护功能,保障系统安全运行。 5. **最大功率点跟踪(MPPT)**:优化光伏电池的功率输出,即使在光照强度变化时也能获取最大能量。 压缩包中的“three.mdl”可能是一个Matlab/Simulink模型文件,用于模拟和分析三相并网逆变器的SPWM控制策略。用户可以通过这个模型来仿真逆变器的动态性能,调整控制参数,以及验证系统在不同条件下的行为。 三相并网逆变器的SPWM控制技术是光伏电力系统的核心组成部分,它涉及到电力电子、控制理论、信号处理等多个领域的知识。掌握这一技术有助于设计出高性能、高效率的光伏并网系统,满足绿色能源发展的需求。
2024-08-31 21:54:45 10KB SPWM控制 三相并网 三相并网逆变
1
在深入研究国内外逆变电源并联控制理论技术的基础上,本论文首先从单台三相逆变电源的研究入手,建立了三相逆变电源的数学模型,并将其转化到同步旋转坐标系进行分析,通过对滤波器传递函数的频域分析设计了滤波参数。 在单台三相逆变电源的控制上,采用双环控制的思想,运用了基于电感电流内环,输出电压反馈外环的控制策略,运用自动控制的理论,结合逆变器传递函数的模型,设计控制器的参数,然后在matlab中建立仿真模型,进行仿真分析。
2024-08-23 18:49:38 2.98MB 三相逆变电源 双闭环控制
1
变频器是现代工业自动化中不可或缺的关键设备,尤其在控制卷染机这类机械设备时,它能够提高生产效率并保障产品的质量。在卷染机应用中,变频器能够根据工艺要求精确控制布匹的张力和线速度,实现恒张力和恒线速度的双重要求。 卷染机作为满足市场对于多品种小批量织物染色需求的设备,其控制要求较为复杂,包括自动记道、自动计数、自动换向、自动掉头、自动停车、防坠液等功能。这些功能的实现,核心在于控制布匹在染色过程中的张力与线速度,从而保证染色的质量和效率。传统采用双直流电机控制的卷染机,虽然能够基本达到恒定要求,但是控制精度和效率都不如变频器驱动的卷染机。 卷染机中变频器的应用,需要具备高度的自控水平和精确的控制性能。在本文中,采用了科创力源CM60-T变频器作为驱动平台,其不仅能精确控制电机的速度,还能实现精确的张力控制。CM60-T变频器具有强大的功能,如惯量补偿、卷径计算、摩擦力补偿、锥度计算等,这些功能对于恒张力的控制至关重要。 为了实现恒定线速度控制,变频器需要实时地根据布匹的直径和厚度来调整电机的转速。CM60-T变频器的自动换盘设计功能(预驱动),通过线速度和卷径的关系,自动计算匹配的角速度,确保布匹的线速度在不同直径下保持恒定。当布卷直径发生变化时,变频器能够自动调整电机转速,维持线速度不变。 恒张力的控制则涉及到矢量控制技术,变频器能够根据张力设定值、锥度、补偿量以及卷轴直径计算出所需的转矩,从而实现对带材张力的间接控制。在实际操作中,通常放卷电机工作在速度模式,保证布匹线速度恒定;而收卷电机则工作在转矩控制模式,以保持恒定的张力。这样的控制方式在卷染机这类大张力控制的系统中尤为重要。 此外,为了提升能效和系统可靠性,变频器还支持公共直流母线技术。通过将两台变频器的PN母线并联,可以回收制动时产生的能量,并将其重新利用,这样既节省了电能又减少了散热设备的需求,进而提高了系统的稳定性和可靠性。 在卷染机的电气系统中,PLC和变频器之间通常采用485通讯,这样可以减少接线并实现高效的数据交换。通过HMI界面设定张力、线速度等参数,并通过PLC传递给变频器,实现精确控制。采用这种通讯方式,变频器可以实时反馈重要参数,便于监控和调整。 在设备试运行时,采用CM60-T控制的卷染机可以实现150米/min的稳定速度,解决了传统直流电机控制时出现的张力连续性和稳定性问题。系统的优化参数值后,卷染机能够在保证质量的前提下,大幅提升生产效率。 在现代工业生产中,变频器在卷染机恒张力恒线速度控制中的应用,不仅提高了生产的自动化水平和产品质量,同时也改善了能效和设备的运行可靠性。未来,随着技术的不断发展,变频器在各种工业自动化领域中的应用将会更加广泛,其重要性也将进一步凸显。
2024-08-23 16:45:01 88KB 变频|逆变
1
太阳能光伏并网发电及其逆变控制_(新能源与微电网技术),太阳能是太阳内部连续不断的核聚变反应过程产生的能量。 地球轨道上的平均 太阳辐射强度为 1367kW/ m 2 。 地球赤道的周长为 40000km, 从而可计算出, 地球 获得的能量可达 173000TW。 太阳能在海平面上的标准峰值强度为 1kW/ m 2 , 地球 表面某一点 24h 的年平均辐射强度为 0. 20kW/ m 2 , 相当于有 102000TW 的能量, 人 类依赖这些能量维持生存。 太阳是一个巨大、 久远、 无尽的能源。 尽管太阳辐射到 地球大气层的能量仅为其总辐射能量 (约为 3. 75×10 26W) 的 22 亿分之一, 但已 高达 173000TW, 也就是说太阳每秒钟照射到地球上的能量就相当于 500 万 t 煤燃 烧释放的能量。 地球上的风能、 水能、 海洋温差能、 波浪能和生物质能以及部分潮 汐能都是来源于太阳; 即使是地球上的化石燃料 (如煤、 石油、 天然气等) 从根 本上说也是远古以来储存下来的太阳能, 所以广义的太阳能所包括的范围非常大, 狭义的太阳能则限于太阳辐射能的光热、 光电和光 ### 太阳能光伏并网发电及其逆变控制 #### 一、太阳能资源概述 太阳能是一种清洁、可再生的能源,其来源是太阳内部的核聚变反应所产生的能量。太阳辐射到地球的能量巨大且持久,根据地球轨道上的平均太阳辐射强度(约1367kW/m²)和地球赤道周长(约40000km),可以计算出地球每年接收到的能量约为173000TW。即使考虑到大气层的吸收和散射等因素,地表某一点24小时的年平均辐射强度仍有0.20kW/m²,即每年大约有102000TW的能量可供人类使用。 地球上的许多能源形式实际上都可以追溯到太阳能,例如风能、水能、海洋温差能、波浪能以及生物质能等。此外,化石燃料(如煤、石油、天然气)本质上也是远古时期植物和动物生命体储存的太阳能。 #### 二、光伏并网发电系统原理 光伏并网发电系统是指将太阳能光伏板产生的直流电转换为交流电后,接入公共电网的一种发电方式。这一过程中关键的技术之一是逆变控制技术,即如何高效、稳定地将直流电转化为符合电网要求的交流电。 **光伏并网发电系统的主要组成部分包括:** 1. **太阳电池板**:将太阳光转化为直流电。 2. **光伏逆变器**:将直流电转换为与电网相匹配的交流电。 3. **最大功率点跟踪技术(MPPT)**:确保光伏板始终工作在其最大功率点附近,提高能量转换效率。 4. **孤岛检测与防止技术**:防止电网故障时,光伏系统独立运行可能对维修人员造成的危险。 5. **低电压穿越技术**:保证系统在电网电压骤降时仍能保持稳定运行。 #### 三、光伏逆变器的关键技术 光伏逆变器是光伏并网发电系统的核心部件,它不仅需要将直流电转换为交流电,还需要保证输出的电能质量满足电网的要求。为此,逆变器的设计需要考虑以下关键技术: 1. **电路拓扑**:选择合适的电路结构对于提高逆变器的转换效率至关重要。 2. **控制策略**:包括基本的PWM控制、载波同步调制、空间矢量调制等,不同的控制方法会影响到逆变器的性能指标。 3. **最大功率点跟踪技术**:通过对光伏阵列输出特性的实时监测和调整,确保逆变器始终工作在最优状态下。 4. **并网标准遵循**:逆变器需要满足当地的电网接入标准,比如电压、频率等参数的要求。 #### 四、碳化硅MOS与碳化硅模块的应用 随着碳化硅(SiC)等新型半导体材料的发展,基于碳化硅的MOSFET和模块因其优异的性能被广泛应用于光伏逆变器中。相较于传统的硅基器件,碳化硅器件具有以下优势: 1. **高耐压能力**:能够承受更高的电压,适用于高压系统。 2. **低导通损耗**:在相同电压等级下,导通电阻更低,损耗更小。 3. **高频操作**:支持更高的开关频率,有助于减小外部滤波器的体积和重量。 4. **高温稳定性**:能够在较高的温度下稳定工作,扩大了逆变器的应用场景。 《太阳能光伏并网发电及其逆变控制》这本书全面覆盖了太阳能光伏发电的基础理论和技术实践,从太阳电池技术到光伏并网逆变器的电路拓扑、控制策略等方面进行了深入探讨。对于希望深入了解光伏并网发电技术的读者来说,本书是一份宝贵的参考资料。
2024-08-16 11:06:14 77.82MB 光伏逆变
1
光耦的基本作用,是将输入、输出侧电路进行有效的电气上的隔离;能以光形式传输信号;有较好的抗干扰效果;输出侧电路能在一定程度上得以避免强电压的引入和冲击。
2024-08-11 20:26:35 303KB 变频|逆变
1