内容概要:本文详细介绍了在Optisystem平台上搭建并仿真自由空间光通信(FSO)系统的三种常见调制格式——OOK(开关键控)、PPM(脉冲位置调制)和BPSK(二进制相移键控)。通过对每种调制格式的具体配置参数、实现方法以及遇到的问题进行深入探讨,作者不仅提供了详细的代码示例和技术细节,还分享了许多宝贵的实践经验。最终,通过对不同条件下三种调制格式的性能进行了全面对比,给出了各自的应用场景建议。 适合人群:从事光学通信研究的技术人员、研究生及以上学历的学生,尤其是那些希望深入了解FSO系统及其调制技术的人群。 使用场景及目标:帮助读者掌握如何在Optisystem中构建和优化FSO系统,理解各种调制格式的特点及其适用范围,从而能够根据具体应用场景选择最优解决方案。 其他说明:文中提到的所有配置参数和实验结果均基于作者的实际操作经验,对于初学者来说是非常有价值的参考资料。同时,作者强调了在实际应用中需要注意的一些关键因素,如大气条件的影响、硬件设备的选择等。
2025-05-07 18:30:57 263KB
1
内容概要:本文详细介绍了利用Matlab进行无人机路径规划的方法,重点探讨了三种优化算法:蝙蝠算法(BA)、差分进化蝙蝠算法(DEBA)以及混沌人工势场蝙蝠算法(CPFIBA)。文章首先解释了每种算法的基本原理及其Matlab实现方式,随后展示了它们在2D和3D路径规划中的具体应用场景。特别强调了CPFIBA在复杂地形中的优越表现,如悬崖地形中的高效避障能力。文中还提供了详细的代码片段,帮助读者理解和实现这些算法。最后,通过对比实验结果,展示了不同算法在路径长度、收敛速度等方面的差异。 适合人群:对无人机路径规划感兴趣的科研人员、工程师及高校学生,尤其是有一定Matlab编程基础的人。 使用场景及目标:适用于需要进行无人机路径规划的研究项目或实际应用,旨在提高路径规划效率和避障能力。目标是通过比较不同算法的表现,选择最适合特定任务需求的算法。 其他说明:文章不仅提供了理论讲解,还包括大量实用的代码示例和图表,便于读者动手实践。此外,作者还分享了一些调参技巧和注意事项,有助于进一步优化算法性能。
2025-04-27 22:24:51 567KB
1
三种加密方式 (1)链路加密 (2)节点对节点加密 (3)端对端加密
2025-04-27 19:09:38 263KB
1
多策略增强型蛇优化算法的改进与实现——基于Matlab平台的三种策略运行效果展示,多策略混沌系统与反捕食策略相结合的双向种群进化动力学:Matlab实现改进的增强型蛇优化算法,多策略增强型的改进蛇优化算法-- Matlab 三种策略的提出: 1、多策略混沌系统 2、反捕食策略 3、双向种群进化动力学 运行效果如下,仅是代码无介绍 ,多策略增强型蛇优化算法; 改进; 反捕食策略; 双向种群进化动力学; 混沌系统; Matlab; 运行效果。,Matlab中的多策略蛇优化算法的改进及反捕食策略应用
2025-04-04 16:40:24 1.05MB xbox
1
在IT领域,数据结构是计算机科学的基础,它研究如何有效地组织和存储数据,以便于算法的执行和系统性能的优化。二叉树作为数据结构的一种,是计算机科学中广泛使用的一种树形数据结构,它的每个节点最多有两个子节点,通常分为左子节点和右子节点。本次数据结构实验涉及的是二叉树的三种遍历方法,它们分别是前序遍历、中序遍历和后序遍历。接下来,我们将详细讨论这三种遍历方式及其在实际编程中的应用。 1. 前序遍历(根-左-右) 前序遍历首先访问根节点,然后递归地对左子树进行前序遍历,最后对右子树进行前序遍历。这种遍历方式常用于创建树的副本或打印树的结构。在代码实现时,通常采用递归方法,也可以用栈来非递归实现。 2. 中序遍历(左-根-右) 中序遍历在访问根节点之前先访问左子树,然后访问根节点,最后访问右子树。对于二叉搜索树,中序遍历可以得到有序序列,可用于排序或查找操作。同样,中序遍历也可以用递归或非递归(借助栈)的方式实现。 3. 后序遍历(左-右-根) 后序遍历首先访问左子树,然后访问右子树,最后访问根节点。这种遍历方式常用于计算节点的值,如计算树的面积或深度。后序遍历的递归实现较为简单,但非递归实现相对复杂,通常需要用到两个辅助栈。 在进行这些遍历时,我们需要注意以下几点: - 递归法:直观简洁,但会占用递归栈空间,对于深树可能导致栈溢出。 - 非递归法(迭代法):利用栈或队列来模拟递归过程,空间效率较高,但实现起来较为复杂,需要理解清楚遍历顺序。 在数据结构实验中,学生通常会被要求实现这三种遍历方法,并通过测试用例验证其正确性。在提供的"数据结构实验代码二叉树的三种遍历.rar"文件中,应包含实现这些遍历的源代码,可能用C++、Java、Python等编程语言编写。学生可以通过阅读和调试代码,深入理解二叉树遍历的概念和实现细节,同时提高编程能力。 掌握二叉树的遍历方法对于理解和解决各种算法问题至关重要,它们不仅在数据结构课程中占有重要地位,也是面试和工作中常见的问题。通过实践和理解这些代码,可以帮助我们更好地运用这些知识到实际项目中。
2025-03-27 23:22:15 354KB 数据结构实验代码
1
● 数据集介绍:城市道路行驶车辆检测数据集,真实监控场景高质量图片数据,涉及场景丰富,比如城市道路快速行驶车辆、城市道路慢速行驶车辆、城市道路密集行驶车辆、城市道路夜间低光行驶车辆数据等。数据集标注标签划分为 "car"、"van"、"bus"、"others" 四个类别; ● 适用实际项目应用:交通道路监控场景下驾驶车辆检测项目,以及作为监控场景通用车辆检测数据集场景数据的补充; ● 标注说明:采用 labelimg 标注软件进行标注,标注质量高,提供 VOC(xml)、COCO (json)、YOLO (txt) 三种常见目标检测数据集格式,可以直接用于如 YOLO 等的算法训练; ● 附赠训练示例:提供 YOLOv8、YOLOv5 一键训练脚本,提供 GPU(GPUs)、CPU、Mac(M芯片) 多平台训练方案支持,提供博主训练结果日志供参考; 注意:由于数据集资源超过 1G,所以托管在我的百度网盘,所以这里的资源格式是 PDF,内附数据集基本情况介绍以及数据集获取方式! ### 目标检测-城市道路行驶车辆检测数据集解析 #### 数据集概述 该数据集主要针对城市道路上的车辆进行目标检测任务,包含了1000张真实监控场景下的高质量图像,涵盖了各种复杂的驾驶环境,例如快速行驶、慢速行驶、密集行驶以及夜间低光条件下行驶的车辆数据。这些丰富的场景不仅有助于提升模型在复杂环境中的鲁棒性,还能够为交通道路监控等实际项目提供强有力的数据支撑。 #### 数据集类别与应用场景 数据集中将车辆标注为四个类别:“car”、“van”、“bus”和“others”,这样的分类方式能够满足大多数交通监控场景下的需求。此外,该数据集还可以作为其他监控场景中通用车辆检测数据集的补充,进一步增强模型对不同车型的识别能力。 #### 标注工具与格式 该数据集采用了`labelimg`标注软件进行标注,这是一款开源且易于使用的图形界面标注工具,它支持多种标注格式,包括VOC(xml)、COCO(json)和YOLO(txt)。这些格式都是目前主流的目标检测算法(如YOLO系列)所支持的标准数据格式,可以直接用于模型训练而无需额外的数据转换处理,大大提高了研究效率。 #### 训练示例与支持平台 数据集还附带了YOLOv8和YOLOv5的一键训练脚本,这些脚本支持GPU(GPUs)、CPU以及Mac(M芯片)等多种硬件平台,极大地扩展了模型训练的灵活性。无论是使用高性能GPU加速训练过程,还是在没有GPU的情况下使用CPU进行训练,亦或是使用最新的Apple M系列芯片设备,用户都能够轻松上手并获得满意的训练效果。此外,博主还提供了自己的训练结果日志供学习者参考,帮助理解模型的表现情况,并进行相应的调整优化。 #### 数据集获取 为了方便下载,该数据集被托管在百度网盘上,具体下载方式如下: - 链接: [https://pan.baidu.com/s/1iyZHb0ygnar1d8LwtAEhKw](https://pan.baidu.com/s/1iyZHb0ygnar1d8LwtAEhKw) - 提取码: 6666 #### 数据集使用建议 1. **预处理阶段**:在使用数据集之前,建议先对数据进行预处理,包括但不限于数据清洗、尺寸统一、灰度图转RGB图等操作,以确保输入数据的质量。 2. **模型选择**:根据具体的任务需求和硬件条件,选择合适的模型版本进行训练。例如,在资源有限的情况下,可以选择YOLOv5n等轻量级模型;而在追求更高精度的应用场景中,则可以考虑使用YOLOv8等更复杂的模型。 3. **训练技巧**:在模型训练过程中,可以尝试不同的超参数设置、数据增强策略以及早停法等技术,来提高模型性能。 4. **评估与调优**:训练完成后,通过准确率、召回率等指标评估模型效果,并根据实际情况进行调整优化。 这个城市道路行驶车辆检测数据集不仅提供了丰富的标注数据,还配备了完善的训练脚本和支持文档,对于想要从事交通监控领域或车辆检测研究的人来说,是一个非常宝贵的学习资源。
2024-11-21 14:50:49 4.33MB YOLO COCO
1
● 数据集介绍:城市道路行驶车辆检测数据集,真实监控场景高质量图片数据,涉及场景丰富,比如城市道路快速行驶车辆、城市道路慢速行驶车辆、城市道路密集行驶车辆、城市道路夜间低光行驶车辆数据等。数据集标注标签划分为 "car"、"van"、"bus"、"others" 四个类别; ● 适用实际项目应用:交通道路监控场景下驾驶车辆检测项目,以及作为监控场景通用车辆检测数据集场景数据的补充; ● 标注说明:采用 labelimg 标注软件进行标注,标注质量高,提供 VOC(xml)、COCO (json)、YOLO (txt) 三种常见目标检测数据集格式,可以直接用于如 YOLO 等的算法训练; ● 附赠训练示例:提供 YOLOv8、YOLOv5 一键训练脚本,提供 GPU(GPUs)、CPU、Mac(M芯片) 多平台训练方案支持,提供博主训练结果日志供参考; 注意:由于数据集资源超过 1G,所以托管在我的百度网盘,所以这里的资源格式是 PDF,内附数据集基本情况介绍以及数据集获取方式! ### 目标检测-城市道路行驶车辆检测数据集解析 #### 数据集概述 该数据集主要针对城市道路中行驶的各类车辆,旨在为交通监控、智能驾驶等应用场景提供丰富的图像资源与标注信息。数据集共包含10,000张高质量的真实监控场景图像,并覆盖了多种行车情况,例如快速行驶、慢速行驶、密集行驶以及夜间低光环境下的车辆。这些场景的多样性和复杂性对于提升模型的泛化能力和鲁棒性至关重要。 #### 类别划分 数据集中的车辆被细分为四个类别:“car”(轿车)、“van”(厢式车)、“bus”(公交车)以及“others”(其他)。这种细致的分类有助于更准确地识别不同类型的车辆,从而更好地服务于实际应用需求。例如,在交通管理中,区分不同类型车辆的能力对于制定合理的交通策略至关重要。 #### 标注工具与格式 所有图像均使用`labelimg`这一强大的标注工具进行了精细标注,确保了数据的质量。此外,为了方便用户使用,提供了三种常见的目标检测数据集格式:VOC(xml)、COCO(json)和YOLO(txt)。这三种格式几乎涵盖了目前主流的目标检测框架所需的数据格式,大大降低了数据预处理的工作量。 - **VOC**:这是一种广泛使用的数据集格式,主要用于Pascal VOC挑战赛。它使用XML文件来存储每个图像的元数据,包括对象的位置信息。 - **COCO**:Common Objects in Context(COCO)格式是一种更现代且功能更全面的数据集格式,适用于多个计算机视觉任务,如物体检测、分割等。COCO格式使用JSON文件来组织数据。 - **YOLO**:You Only Look Once(YOLO)格式非常适合快速训练和部署,因为它简单直观,仅使用文本文件来表示边界框坐标和类别的索引。 #### 训练支持 数据集还附带了针对YOLOv8和YOLOv5的一键训练脚本,这极大地简化了训练过程。支持多平台(GPU、CPU和Mac M芯片),使得不同硬件条件下的用户都能轻松进行模型训练。此外,还提供了训练日志供参考,这对于理解训练过程中的问题和优化模型非常有帮助。 #### 数据集划分脚本 数据集还包含了一个用于划分数据集的脚本。这个脚本可以将数据集自动划分为训练集、验证集和测试集,这是机器学习项目中非常重要的一步。通过合理划分数据集,可以有效地评估模型性能并避免过拟合。 #### 应用场景 此数据集特别适合应用于以下几种场景: - **交通监控**:监测道路上的车辆流量,识别异常行为(如闯红灯、逆行等)。 - **智能驾驶辅助系统**:帮助自动驾驶汽车识别周围的车辆类型和位置,提高驾驶安全性。 - **城市管理**:统计特定时间段内的车辆类型分布,为城市规划提供数据支持。 #### 获取方式 数据集可通过百度网盘链接下载:[链接](https://pan.baidu.com/s/1CJ-3SK3heWHzlVHb_PMKHA),提取码为6666。需要注意的是,由于数据集资源超过1GB,因此提供的下载文件为PDF格式,其中包含了数据集的基本情况介绍及获取完整数据集的方式。 该数据集以其丰富的场景覆盖、高质量的图像和标注、灵活的数据格式以及便捷的训练支持,为从事车辆检测相关研究或应用的开发者提供了一套非常有价值的数据资源。
2024-11-21 14:48:48 4.33MB 车辆检测 YOLO COCO
1
在计算机科学领域,CPU(中央处理器)是计算机系统的核心组件,负责执行指令并控制硬件操作。流水线技术是现代CPU设计中的一个重要概念,它通过将指令执行过程分解为多个独立阶段,实现指令间的重叠执行,从而提高处理器的吞吐率。本课程设计主要关注的是在VIVADO环境下如何构建一个基于MIPS架构的流水线CPU,并解决在流水线中可能出现的三种冒险问题。 VIVADO是一款由Xilinx公司开发的硬件描述语言综合工具,主要用于FPGA(现场可编程门阵列)的设计和实现。它提供了一个完整的流程,包括设计输入、逻辑综合、布局布线、仿真验证以及硬件编程等,使得开发者能够高效地创建、优化和验证复杂的数字系统。 在这个课程设计中,我们将使用VIVADO来实现一个MIPS(Microprocessor without Interlocked Pipeline Stages)架构的CPU。MIPS是一种精简指令集计算机(RISC)架构,以其简洁高效的指令集和流水线设计而闻名。它的指令执行过程被划分为取指、解码、执行、内存访问和写回五个阶段。 在流水线CPU设计中,可能会遇到三种类型的冒险:数据冒险、控制冒险和结构冒险。数据冒险是指指令间的依赖关系导致的数据冲突;控制冒险是由于分支或跳转指令引起的流水线乱序;结构冒险则源于硬件资源的共享冲突。解决这些冒险的方法各有不同: 1. 数据冒险:通常通过插入旁路(bypassing)电路来解决,它允许前一条指令的结果在未写入寄存器之前直接传递给后续指令使用。 2. 控制冒险:通常采用动态分支预测和分支目标缓冲器来提前确定分支目标,减少因分支延迟而导致的停顿。 3. 结构冒险:可以通过改进硬件设计,如增加专用通路或使用多级队列,避免资源冲突。 在VIVADO中,我们首先需要编写Verilog或VHDL代码来描述CPU的逻辑功能,然后使用VIVADO的综合工具将其转换为逻辑门级表示。接着,进行布局布线,分配FPGA上的物理资源。通过仿真验证确保设计正确无误后,下载到FPGA硬件中运行。 这个课程设计不仅涵盖了计算机组成原理的基础知识,还涉及到VIVADO工具的使用技巧,对理解硬件描述语言、FPGA设计流程以及CPU流水线原理有极大的帮助。代码可以直接运行,便于学习者快速上手并进行实践操作。在学习过程中,遇到任何问题都可以随时提问,作者承诺会给予及时的回应和支持。
2024-09-13 08:13:01 1.34MB VIVADO
1
1、YOLO树叶分类目标检测数据集,真实场景的高质量图片数据,数据场景丰富。使用lableimg标注软件标注,标注框质量高,含voc(xml)、coco(json)和yolo(txt)三种格式标签,分别存放在不同文件夹下,可以直接用于YOLO系列的目标检测。 2、附赠YOLO环境搭建、训练案例教程和数据集划分脚本,可以根据需求自行划分训练集、验证集、测试集。 3、数据集详情展示和更多数据集下载:https://blog.csdn.net/m0_64879847/article/details/132301975
2024-08-11 13:59:56 27.93MB 目标检测 数据集 课程资源
1
1、YOLO环形编码标记物检测数据集,真实场景的高质量图片数据,数据场景丰富。使用lableimg标注软件标注,标注框质量高,含voc(xml)、coco(json)和yolo(txt)三种格式标签,分别存放在不同文件夹下,可以直接用于YOLO系列的目标检测。 2、附赠YOLO环境搭建、训练案例教程和数据集划分脚本,可以根据需求自行划分训练集、验证集、测试集。 3、数据集详情展示和更多数据集下载:https://blog.csdn.net/m0_64879847/article/details/132301975
2024-06-24 21:04:08 786.28MB 数据集 课程资源