内容概要:本文介绍了如何使用ABAQUS软件模拟Miura折纸的折叠过程,从初始的平面展开状态逐步折叠至最终形态。文章详细描述了建模准备阶段,包括设置单位、材料属性和初始几何形状;模拟过程分为多个折叠步骤,每次迭代调整节点位置和连接方式,确保模拟精度。文中还提供了部分代码片段,帮助读者更好地理解具体操作方法。最后,文章强调了这种模拟对深入了解折纸艺术及其背后的力学原理的意义。 适合人群:对折纸艺术感兴趣的研究人员和技术爱好者,尤其是那些希望利用有限元分析工具(如ABAQUS)进行相关研究的人群。 使用场景及目标:适用于科研项目中对Miura折纸结构力学特性的探究,或者作为教学案例用于工程力学课程的教学辅助。 其他说明:通过这种方式不仅可以欣赏到折纸艺术之美,还能掌握ABAQUS的基本操作技能,同时加深对薄壳结构力学行为的理解。
2025-10-19 04:31:25 1.69MB
1
利用ABAQUS有限元分析软件对双稳态折纸立方体从初始展开状态到折叠状态的全过程进行模拟。文章首先阐述了建模方法,包括模型建立、材料属性定义和初始条件设置。接着,通过施加沿高度方向的压缩力,逐步模拟了立方体的折叠过程,并分析了应力分布情况。最后,对折叠完成后的稳定性及回弹行为进行了深入探讨,验证了双稳态折纸结构的力学性能。 适合人群:从事结构力学、材料科学及相关领域的研究人员和技术人员。 使用场景及目标:适用于需要深入了解折纸结构力学特性的科研项目,旨在为相关领域的研究提供理论依据和技术支持。 其他说明:文中提到的研究成果不仅有助于学术界更好地理解双稳态折纸结构的行为特征,也为实际工程应用奠定了坚实的基础。
2025-10-19 04:30:39 322KB
1
利用ABAQUS有限元分析软件对双稳态折纸立方体从初始展开状态到折叠状态的模拟过程。文章首先建立了三维模型并设定了材料属性和初始条件,然后逐步施加压缩力,观察应力分布和形态变化,直至折叠完成。最后,通过稳定性分析和回弹行为测试,验证了双稳态折纸结构的力学性能。研究表明,模拟结果与理论预测一致,为未来的复杂折纸结构研究奠定了基础。 适合人群:从事结构力学、材料科学、有限元分析的研究人员和技术人员。 使用场景及目标:适用于需要深入了解折纸结构力学特性和双稳态特性的科研项目,旨在为实际工程应用提供理论依据和技术支持。 其他说明:文章还展望了未来研究方向,提出可以进一步探索多层次、多材料折纸结构的力学性能和双稳态特性。
2025-10-19 04:29:53 324KB
1
ABAQUS GTN模型是ABAQUS软件中的一个高级特性,用于模拟复杂几何形状和非线性材料行为的网格自由变形。在ABAQUS中,GTN(Generalized Traction Node)模型是一种强大的边界条件处理工具,尤其适用于处理接触问题、大变形以及具有自由表面或界面的结构分析。下面我们将深入探讨ABAQUS GTN模型的相关知识点。 1. **GTN模型的概念** GTN模型允许用户在模型表面上指定独立的法向和切向 traction(应力或应变)。这使得用户可以精确地控制接触区域的行为,即使在复杂的接触配置和大变形情况下。GTN节点不仅能够处理传统的面与面的接触,还能处理点、线、面之间的接触,以及自接触问题。 2. **ABAQUS中的接触类型** ABAQUS提供了多种接触类型,包括自动接触、定义接触对和GTN接触。GTN模型提供了一种更为灵活的方法来指定接触边界条件,通过在表面上指定独立的牵引力,可以更精确地模拟接触面的行为。 3. **GTN模型的创建** 创建GTN模型通常涉及以下步骤: - 选择模型表面:用户需要识别出需要应用GTN模型的表面。 - 创建GTN节点:然后,在选定的表面上创建GTN节点,这些节点将作为接触条件的施加点。 - 分配牵引力:为每个GTN节点分配独立的法向和切向牵引力,这些力可以是常量、函数、或者与位移、应变等关联的表达式。 - 定义接触规则:定义接触属性,如滑动摩擦系数、穿透惩罚参数等。 4. **GTN模型的应用场景** GTN模型广泛应用于以下几个领域: - 工程机械的碰撞分析:例如,模拟挖掘机斗与地面的接触。 - 车辆与路面的交互:分析轮胎与路面的接触,研究摩擦和滑动。 - 生物医学工程:如骨骼与假体间的接触,软组织的形变。 - 材料科学:研究多层复合材料的界面效应。 5. **GTN模型的优势** - 灵活性:GTN模型提供了更大的自由度,用户可以精确控制接触区域的边界条件。 - 非线性处理能力:适合模拟大变形、接触非线性等问题。 - 精确性:对于复杂的接触界面和自由表面,GTN模型能提供更准确的结果。 6. **GTN模型的限制** 尽管GTN模型强大,但也有其局限性,比如计算成本较高,需要更多的内存和CPU时间,特别是在大型和复杂的模拟中。此外,设置GTN模型需要专业知识,用户需要对接触力学有深入理解。 总结来说,ABAQUS GTN模型是解决复杂接触问题的重要工具,它通过提供高级的边界条件控制,帮助工程师们准确模拟实际工程中遇到的各种复杂情况。理解和熟练应用GTN模型,可以显著提升ABAQUS模拟的精度和可靠性。
2025-10-11 21:04:42 11KB ABAQUS
1
内容概要:本文介绍了利用ABAQUS软件对饱和粘土孔压静力触探过程进行数值模拟的方法。通过建立轴对称模型并采用修正剑桥模型来描述土体特性,模拟了贯入过程中的孔压变化、位移和应力分布。研究表明,孔压随深度增加而增大,位移和应力分布反映了土体的变形行为及其力学性质。最终验证了模型的准确性,为静力触探贯入机理研究提供新方法。 适合人群:从事岩土工程、地质工程及相关领域的研究人员和技术人员。 使用场景及目标:适用于需要深入了解土体力学特性的科研项目,以及希望通过数值模拟优化施工方案的设计单位。 其他说明:文中详细描述了建模步骤、参数设置及结果分析,强调了ABAQUS软件在此类研究中的重要性。
2025-10-09 20:09:37 332KB
1
本课程基于Abaqus,应用两种加载方式一-FluidCavity与Pressure分别介绍了气动驱动软体机器人仿真分析流程。 该软体机器人涉及两种材料,主变形部分选用超弹性材料,应用Yeoh本构定义材料属性;限制层部分定义为线弹性材料。 此外,对结果的后处理进行了简要介绍。 想学轮胎充气、气囊充气、各种充气分析都能用 气动驱动软体机器人是机器人领域中一种新兴技术,它模仿生物体软体结构和运动原理,以实现复杂的动作和适应各种环境的能力。Abaqus软件是一个广泛应用于工程仿真分析的工具,它能够模拟物理现象和工程问题。在气动驱动软体机器人的仿真分析中,Abaqus软件扮演着关键角色,尤其是其强大的材料模型定义和加载方式的应用。 在本课程中,首先介绍了使用Abaqus进行气动驱动软体机器人仿真分析的流程。这一过程涉及两种不同的加载方式,即FluidCavity(流体腔体)和Pressure(压力加载)。流体腔体加载方式主要模拟内部流体对软体结构的作用,而压力加载则关注施加在软体机器人表面的均匀或非均匀压力效果。这两种加载方式的选择和应用,对于准确模拟气动驱动软体机器人的动态行为至关重要。 课程中提及的软体机器人结构由两种材料组成。主变形部分选用超弹性材料,这类材料具有高弹性和可逆变形的能力,非常适合模拟软体机器人在受力后的动态响应。而Yeoh本构定义是Abaqus中的一种材料模型,它被用来定义超弹性材料的应力-应变行为。Yeoh模型基于应变能密度函数,能够描述材料在大变形下的非线性弹性行为,非常适合模拟软体机器人在气压驱动下的形变和应力分布。另外,软体机器人的限制层部分定义为线弹性材料,它对软体结构的整体稳定性和抗拉强度提供支持。 在进行气动驱动软体机器人仿真分析后,结果的后处理也是一个重要环节。后处理可以分析仿真结果,包括变形图、应力分布、应变情况等,从而评估机器人的性能和可靠性。这对于优化软体机器人的设计以及预测其在实际应用中的表现具有重要意义。 该课程不仅适合对气动驱动软体机器人感兴趣的学员,也适合需要进行充气分析,如轮胎充气、气囊充气等实际应用的学习者。通过本课程的学习,学员能够掌握如何使用Abaqus软件进行气动驱动软体机器人的仿真分析,从而对软体机器人技术有一个全面而深入的了解。
2025-09-30 16:32:23 436KB edge
1
内容概要:本文详细介绍了使用ABAQUS有限元软件对叶片螺旋切雪过程进行模拟的技术。首先简述了ABAQUS软件的功能特点,然后逐步讲解了建模、材料属性定义、网格划分、边界条件和载荷设置、接触和摩擦设置以及求解设置的具体步骤。通过模拟,可以获取雪体在切削过程中的受力、变形和损伤情况,并利用后处理模块进行数据分析。最终,通过对模拟结果的分析,可以优化叶片的设计参数,从而提高切削效率并减少对雪体的损伤。 适合人群:从事机械工程、材料科学及相关领域的研究人员和技术人员。 使用场景及目标:适用于需要精确模拟和分析叶片切削冰雪过程的场景,旨在提高设备性能和安全性,特别是在风力发电、航空航天、交通运输等领域。 其他说明:随着计算机技术的发展,这一技术有望在未来得到更广泛的应用。
2025-09-29 20:55:19 253KB ABAQUS 工程仿真
1
地震、波浪作用下的ABAQUS、ANSYS与Simpack车桥耦合教程模型.pdf
2025-09-25 14:27:49 58KB
1
内容概要:本文详细介绍了使用Abaqus和fe-safe软件进行多场耦合仿真分析的工作流程,包括几何模型构建、材料属性定义、网格划分、约束与载荷施加、求解作业以及结果后处理等步骤。具体操作涵盖模型导入、材料属性设置、截面创建与指派、网格划分控制、分析步创建与编辑、接触属性定义、载荷与边界条件设定、作业提交及求解、可视化模块中应力云图查看等内容。最后,文章还讲解了如何利用nCode模块进行疲劳分析,包括VibrationGenerator属性设置、应力组合方法选择、PSD循环计数法设置以及最终结果查看。 适用人群:具有一定的有限元分析基础,从事机械设计、材料科学等相关领域的工程师和技术人员。 使用场景及目标:①掌握Abaqus软件中多场耦合仿真的完整流程,包括从模型构建到求解作业的各个细节;②学会使用fe-safe和nCode模块进行疲劳分析,了解如何设置材料属性、载荷、边界条件及解读分析结果;③提高对复杂工程问题(如齿轮传动系统)的仿真分析能力,确保设计方案的安全性和可靠性。 其他说明:本文内容详尽,图文并茂,不仅提供了操作步骤,还解释了每一步骤背后的原理和注意事项。建议读者在实践中逐步熟悉各个模块的功能,结合实际案例不断练习,以达到熟练掌握的目的。此外,对于初学者来说,可以先尝试简单的案例,随着经验积累再挑战更复杂的工程问题。
2025-09-25 09:59:05 11.44MB Abaqus 有限元分析 热力耦合 疲劳分析
1
Abaqus数值模拟案例集:探究随机纤维分布二维RVE模型中微观横向拉伸损伤的Drucker-Prager准则与Ductile-Damage延性损伤的模拟对比,Abaqus数值模拟案例研究:随机纤维分布二维RVE模型中的微观横向拉伸损伤与延性损伤评估,abaqus数值模拟案例系列-随机纤维分布二维RVE模型微观横向拉伸损伤,设置了周期边界,采用Drucker-Prager(dp)准则,Ductile-Damage延性损伤,界面采用cohesive单元,采用牵引分离方法,Qudes-Damage损伤,对比了两种求解器下的结果,载荷峰值几乎一致,损伤有不同,内包含cae、inp以及odb结果文件。 ,关键词:Abaqus数值模拟; 随机纤维分布; 二维RVE模型; 微观横向拉伸; 损伤; 周期边界; Drucker-Prager(dp)准则; Ductile-Damage延性损伤; cohesive单元; 牵引分离方法; Qudes-Damage损伤; 求解器对比; 载荷峰值; 内含cae、inp、odb结果文件。,Abaqus模拟纤维分布RVE模型:二维横向拉伸损伤分析与求解器对比
2025-09-24 17:01:42 1.55MB css3
1