多目标粒子群算法MOPSO,Matlab实现 测试函数包括ZDT、DTLZ、WFG、CF、UF和MMF等,另外附有一个工程应用案例;评价指标包括超体积度量值HV、反向迭代距离IGD、迭代距离GD和空间评价SP等 ,多目标粒子群算法MOPSO的Matlab实现与综合测试:涵盖ZDT、DTLZ、WFG等多类测试函数及MMF与CF,并附以工程应用案例的评估与分析,采用超体积HV、反向迭代IGD及迭代空间等评方法,基于多目标粒子群算法MOPSO的Matlab实践:涵盖ZDT、DTLZ、WFG等多类测试函数与MMF案例,以及超体积度量HV等综合评指标体系的应用研究,MOPSO; Matlab实现; 测试函数: ZDT; DTLZ; WFG; CF; UF; MMF; 评价指标: HV; IGD; GD; SP,多目标粒子群算法MOPSO:Matlab应用及性能评价
2025-04-09 17:46:58 2.04MB
1
深度学习驱动的复杂环境下人员异常行为精准检测系统:多目标检测跟踪实现摔倒、越线、徘徊、拥挤检测 - 基于YoloV3+DeepSort在TensorFlow框架下的应用,基于深度学习的人员异常行为检测系统:多目标检测与跟踪实现摔倒、越线、徘徊及拥挤检测——Yolov3+DeepSort在TensorFlow框架下的应用。,人员异常行为检测 基于深度学习的人员异常行为检测,多目标检测+多目标跟踪实现人员摔倒检测,越线检测,徘徊检测,拥挤检测,yolov3+deepsort,tensorflow ,核心关键词:深度学习;人员异常行为检测;多目标检测;多目标跟踪;摔倒检测;越线检测;徘徊检测;拥挤检测;Yolov3;DeepSort;TensorFlow;,深度学习多目标检测跟踪:摔倒、越线、徘徊、拥挤行为检测
2025-04-09 00:49:24 6.48MB csrf
1
Citypersons数据集(标签已转换成yolo格式,数据集太大无法上传),放在百度网盘。
2025-04-08 02:40:22 1.03MB 数据集 目标检测
1
yolov5吸烟检测,pyqt5,目标检测,深度学习,网络优化,目标检测接单,yolov5,yolov7,yolov8 语言:python 环境:pycharm,anaconda 功能:有训练结果,可添加继电器或者文字报警,可统计数量,可统计数量,可网络优化
2025-04-07 19:33:49 480.26MB 数据集 目标检测
1
"五类实时交通目标检测自建数据集:涵盖汽车、灯光、摩托、行人与路标,总计1498张原始图片资源",5类实时交通自建目标检测数据集 该数据集包括car,light,moto,person,signs等5个类别 总计图片1498张,训练集998张图像,验证集和测试集分别是250张图片 数据集已经划分为训练集 验证集 测试集 数据集支持YOLO格式 VOC格式 COCO格式 数据集在yolov8s上mAP50是0.763,P是0.791 数据集未经任何图像预处理等操作,皆是原始图片 可直接使用,可直接使用,可直接使用 ,核心关键词: 5类实时交通; 自建目标检测数据集; car; light; moto; person; signs; 1498张图片; 训练集; 验证集; 测试集; YOLO格式; VOC格式; COCO格式; yolov8s; mAP50; P值; 未经预处理; 原始图片; 可直接使用。,五个类别交通实时目标检测自建数据集:1498张原图覆盖car等5种对象
2025-04-07 10:53:19 3.75MB
1
包含yolov8多种预训练模型,可以直接用于各种任务,如目标检测、图像分割等。
2025-04-06 13:42:54 845.62MB 目标检测 yolo
1
手臂工具链 针对OS X主机和arm-linux-gnueabihf目标的工具链,针对cortex-a7(Raspberry Pi 2)进行了优化。 检出到/ usr / local / arm-cortex_a7-linux-gnueabihf并将/ usr / local / arm-cortex_a7-linux-gnueabihf / bin添加到PATH 组件和版本 gcc 5.4.0,glibc 2.24,binutils 2.26,gdb 7.11.1(使用crosstool-ng构建) 提升1.63.0(带有HEAD的上下文和光纤) OpenCV 3.1.0 Raspicam( ) Qt 5 系统库(X11,OpenGL)来自FedBerry 24
2025-04-04 04:48:59 168.03MB
1
在计算机视觉领域,OBB(Oriented Bounding Box,定向边界框)是一种用于表示目标位置的边界框,区别于传统的轴对齐边界框(AABB,Axis-Aligned Bounding Box),OBB 可以任意旋转以更紧密地包围目标物体。这种表示方式在某些应用场景中具有显著优势,例如当目标物体呈现出明显的方向性或不规则形状时,通过下载预训练模型可以实现该功能。
2025-04-02 23:44:45 6.26MB 目标定位
1
老鼠数据集,用于目标检测
2025-04-01 17:10:04 254KB 目标检测 数据集
1
TinyPerson是远距离且具有大量背景的微小物体检测的基准。TinyPerson中的图像是从互联网上收集的。首先,从不同的网站收集高分辨率的视频。其次,每50帧对视频中的图像进行采样。然后删除具有一定重复 (同质性) 的图像,并且用手用边界框用72,651对象注释所得图像。此文件中包含1532张,类别为earth_person和sea_person,所有图片已标注为txt格式,划分为训练集、验证集和测试集,可直接用于YOLO各个版本模型的训练。
2025-04-01 15:42:01 74.05MB 数据集 YOLO 目标检测 行人检测
1