基于贝叶斯的恶意流量检测可视化程序
贝叶斯变化点检测与时间序列分解 说明见包内readme文档 一种贝叶斯算法,用于检测变化点并将时间序列分解为趋势、季节性和突变。 时间序列数据的解释受模型选择的影响。不同的模型可以对同一数据的模式、趋势和机制给出不同甚至相互矛盾的估计,这一限制可以通过本软件包中的突变、季节性和趋势(BEAST)的贝叶斯估计得到缓解。BEAST试图通过放弃“单一最佳模型”的概念,并通过贝叶斯模型平均方案将所有竞争模型纳入推理,从而改进时间序列分解。它是一种灵活的工具,可以揭示时间序列观测中的突然变化(即变化点)、周期变化(例如季节性)和非线性趋势。BEAST不仅可以告诉您何时发生更改,还可以量化检测到的更改为真的可能性。它不仅检测分段线性趋势,还检测任意非线性趋势。BEAST适用于遥感、金融、公共卫生、经济、气候科学、生态学和水文学等各种实时序列数据。示例应用包括使用它来确定生态数据中的制度变迁,从卫星图像绘制森林干扰和土地退化地图,检测经济数据中的市场趋势,查明气候数据中的异常和极端事件,以及揭示生物数据中的系统动力学
2022-06-08 12:04:38 3.88MB 算法
数据挖掘 贝叶斯算法 C++ 贝叶斯算法一般都用MATLAB实现,好不容易找到个C++的,可以用到工程中去
hBayesDM hBayesDM (决策任务的多层贝叶斯建模)是一种用户友好的程序包,可对一系列决策任务上的各种计算模型提供分层的贝叶斯分析。 hBayesDM使用进行贝叶斯推理。 现在, hBayesDM支持和 ! 快速链接 教程: : (R)和 (Python) 邮件列表: : forum / hbayesdm-users 错误报告: https : //github.com/CCS-Lab/hBayesDM/issues 贡献:请参阅此存储库的Wiki 。 引文 如果您使用hBayesDM或其某些代码进行研究,请引用本文: @article { hBayesDM , title = { Revealing Neurocomputational Mechanisms of Reinforcement Learning and Decision-Making
1
针对传统Takagi-Sugeno-Kan(TSK)模糊系统处理大规模数据时间代价较高的问题,提出一种基于概率模型框架的L2型TSK模糊系统建模策略,建立具有处理大规模数据能力的贝叶斯L2型TSK模糊系统(B-TSK-FS).具体地,基于L2型TSK模糊系统的输出误差概率化表示,对系统前后件参数联合学习,提高系统的泛化能力.另外,引入狄利克雷先验分布函数,对模糊隶属度稀疏化表示,实现样本的压缩,降低运算时间.在模拟和真实数据集上的实验结果验证了所提出模糊系统的优势.
1
对基于朴素贝叶斯算法的垃圾邮件过滤技术进行了研究分析和实验验证。介绍了向量空间模型(VSM)方法以及特征向量抽取方法,推导和研究了引入“特征之间互相独立”假设的朴素贝叶斯分类算法。采用K次交叉验证的方法,以收集的一些邮件为语料,应用朴素贝叶斯分类算法,通过训练集计算得到类别的先验概率和特征项的类条件概率,并以此为基础对测试集中的邮件进行归属判断,以正确率和召回率为指标给出了实验结果。
2022-06-07 11:48:18 284KB 工程技术 论文
1
贝叶斯分析食谱 介绍 我最近受到贝叶斯统计分析的灵活和强大的启发。 然而,与许多事情一样,灵活性通常意味着要对易用性进行权衡。 我认为拥有一本可用于多种设置的代码手册对于将贝叶斯方法引入更通用的设置非常有帮助! 目标 我的目标是每个型号有一个笔记本。 在每个笔记本中,您最终应该会发现: 这里正在解决的问题。 数据结构的描述。 示例数据表。 它通常最终会成为数据。 模型的 PyMC3 代码; 在某些笔记本中,同一型号可能有两个版本。 有关如何报告 MCMC 采样后验结果的示例。 我希望这些食谱对你有用! (假设 我的假设遵循帕累托原则:大部分现实世界的问题基本上可以归结为几类问题,这些问题具有贝叶斯解释。 特别是,我有这样的预感,像ANOVA常用的方法,可以通过概念比较简单和更可解释的贝叶斯替代品取代,像约翰Kruschke最好的(B ayesianéstimation小号up
2022-06-07 11:20:04 54.69MB notebook bayesian-methods neural-networks bayesian
1
我也是找了好久,英文“Probabilistic Programming and Bayesian Methods for Hackers”,2分分享给大家,http://www.cnblogs.com/hxsyl/
2022-06-07 10:44:21 7.61MB 贝叶斯 概率编程
1
压缩感知稀疏贝叶斯算法,包含SBL,TSBL和TMSBL算法。亲自测试能够使用
2022-06-06 14:11:26 479KB 算法 源码软件 TMSBL

通过分析设备故障诊断与维修所面临的主要问题以及当前常用诊断策略存在的局限性, 研究
基于贝叶斯网络的故障诊断策略优化方法。提出了适合于表达诊断问题的基于故障假设2观测2维修操
作节点的贝叶斯网络结构, 阐述了基于贝叶斯网络的故障诊断策略优化方法的基本思想和优化算法。 该
方法综合考虑了多故障、 有观测操作以及操作之间有依赖关系等情况。最后通过应用实例, 证实了该方
法在信息不确定条件下进行诊断与维修决策的有效性。

1