二维紧凑变分模式分解 (2D-TV-VMD) 空间紧凑和光谱稀疏的图像分解和分割将多维信号(例如图像)分解为空间紧凑、潜在重叠的本质上波状的模式,使这些组件可用于进一步的下游分析。 通过这种分解,可以进行空频分析,解调,局部方向估计,边缘和拐角检测,纹理分析,降噪,修复或曲率估计。 我们的模型将输入信号分解为具有窄傅立叶带宽的模式; 为了应对与窄带宽不兼容的尖锐区域边界,我们引入了二进制支持函数,它们在窄带模式下充当图像重组的掩码。 L1 和 TV 术语促进稀疏性和空间紧凑性。 将支持函数约束到信号域的分区,我们有效地获得了基于光谱均匀性的图像分割模型。 通过将多个子模式与单个支持函数耦合在一起,我们能够将图像分解为多个晶粒。 我们的高效算法基于变量分裂和交替方向优化; 我们采用类似 Merriman-Bence-Osher 的阈值动力学,在稀疏促进项下通过支持函数边界的平均曲率有效地处理
2022-01-21 14:59:12 1.84MB matlab
1
用于信号稀疏分解重构和进行压缩感知处理,从入门到深入都有的资料,建议详细阅读,调试后使用。
1
SPAMS SPArse Modeling Software 是一个为解决各种稀疏估计问题的开源优化工具箱 本文件中有全部的代码和文档 及使用说明
2022-01-19 21:48:30 1.41MB SPAMS mex 源码
1
l-曲线矩阵代码代码代码 该存储库适用于以下论文中介绍的自我正则化加权稀疏(SRWS)模型,并在Matlab R2018a中构建。 Zhang T,Peng Z,Wu H,et al。 [J]。 神经计算,420:124-148。 有关我的更多信息,您可以访问我的。 内容 介绍 红外搜索与跟踪(IRST)系统已在许多领域中广泛使用,但是,在复杂背景下检测红外小目标仍然是一项艰巨的任务。 本文提出了一种新的检测方法,称为自规则加权稀疏(SRWS)模型。 该算法是针对数据可能来自多个子空间的假设而设计的。 并且,可以检测背景结构信息的重叠边缘信息(OEI)被用于约束稀疏项并提高准确性。 此外,自正则项用于在背景中挖掘潜在信息,并从多个子空间中提取杂波。 因此,红外小目标检测问题转化为优化问题。 通过将优化函数与乘积交替方向法(ADMM)结合,我们解释了SRWS的求解方法并优化了其迭代收敛条件。 一系列实验结果表明,所提出的方法优于最新的基线。 图1.红外图像转换为斑块图像的插图。 图2.背景估计能力的图示。 (a)-(d)是原始图像; (e)-(h)是通过IPI估计的背景,采用单个子空间方
2022-01-19 10:29:47 38.97MB 系统开源
1
SMALLbox is a new foundational framework for processing signals using adaptive sparse structured representations
2022-01-17 10:38:27 31.94MB 图像 稀疏化
1
稀疏正则化函数的选取直接影响到稀疏非负矩阵分解高光谱解混的效果。目前,主要采用 L0.或 L1 范数作为稀疏度量。L0 稀疏性好,但求解困难;L1 求解方便,但稀疏性差。提出一种近似稀疏模.型,并将其引入到多层非负矩阵分解(AL0-MLNMF)的高光谱解混中,将观测矩阵进行多层次稀疏分.解,提高非负矩阵分解高光谱解混的精度,提升算法的收敛性。仿真数据和真实数据实验表明:该算.法能够避免陷入局部极值,提高非负矩阵分解高光谱解混性能,算法精度上比其他几种算法都有较大.的提升效果,RMSE 降低 0.001~1.676 7,SAD 降低 0.002~0.2443。
1
哈夫曼编码和稀疏矩阵的操作课程设计报告.doc
2022-01-12 23:03:34 1.72MB 哈夫曼编码
1
共轭梯度法解稀疏矩阵,过程详细,算例参考数值分析
2022-01-12 16:30:36 4KB matlab 共轭梯度法
1
Multipath Matching Pursuit with Depth-First (MMP-DF) 是一种贪婪算法,它为稀疏重建/近似问题提供近似解:min ||x||_0 使得 Phi * x = y。 该算法来自论文:[*] S. Kwon、J. Wang 和 B. Shim,“多路径匹配追踪”,IEEE Trans。 通知。 理论,卷。 60,没有。 5,第 2986-3001 页,2014 年 5 月。
2022-01-10 12:54:48 3KB matlab
1