Intel 的OpenCL安装包,在ubuntu 20.04, vmvare下面安装成功
2021-11-04 13:00:43 174.03MB OpenCL Intel CPU
1
【原书作者】: Roland E. Best (Switzerland) 【译者】: 【ISBN 】: 0-07-141201-8 【页数 】:421 【开本 】 :9.6 x 7.6 x 1.4 inches 【出版社】 :McGraw-Hill Professional 【出版日期】:2003 June 18 【文件格式】:PDF Book Description Phase Locked Loops (PLLs) are electronic circuits used for frequency control. Anything using radio waves, from simple radios and cell phones to sophisticated military communications gear uses PLLs.The communications industry’s big move into wireless in the past two years has made this mature topic red hot again. The fifth edition of this classic circuit reference comes complete with extremely valuable PLL design software written by Dr. Best. The software alone is worth many times the price of the book. The new edition also includes new chapters on frequency synthesis, CAD for PLLs, mixed-signal PLLs, and a completely new collection of sample communications applications.
2021-11-03 11:44:37 6.35MB PLL 5th edition
1
三角插值matlab代码计算方法与应用 Matlab函数被编码为AMS 147(计算方法和应用程序)类的一部分。 compute_factorial.m-接受整数作为输入并返回阶乘,而无需使用内置的阶乘函数。 compute_Euclidean_norm.m-计算任意输入向量x的欧几里得范数。 matrix_times vector.m-计算n维方矩阵与n维列向量之间的乘积pi_series.m-重新调整pi系列的前15个部分和,并估计该系列的收敛顺序。 chord_method.m-接受一个非线性方程,并执行chord方法来找到零。 测试zero.m-计算五阶Chebyshev多项式的最小零的近似值,并绘制收敛历史。 Lagrange_interpolation.m-计算给定数据点集的拉格朗日插值test_Lagrange_interpolation.m-计算多项式的拉格朗日插值,该插值在等距网格和具有Chebyshev-Gauss-Lobatto点的网格中插值数据集。 还绘制了使用两个不同网格获得的拉格朗日插值。 compute_Lebesgue_function.m-接受插值节点
2021-11-02 15:45:27 12KB 系统开源
1
Multitarget-Multisensor Tracking Applications and Advances Vol III[2000]
2021-11-01 20:45:04 23.68MB Multitarget-Multisensor
1
本书为泛函分析的经典教材,一直被世界各国的大学作为教材来使用.
2021-10-31 09:19:46 123.32MB 泛函分析
1
同标题 A lightweight C++ library for quantitative finance applications.rar
2021-10-30 23:08:46 4.75MB C++ quantitative finance
1
The goal of the Volume I Geometric Algebra for Computer Vision, Graphics and Neural Computing is to present a unified mathematical treatment of diverse problems in the general domain of artificial intelligence and associated fields using Clifford, or geometric, algebra. Geometric algebra provides a rich and general mathematical framework for Geometric Cybernetics in order to develop solutions, concepts and computer algorithms without losing geometric insight of the problem in question. Current mathematical subjects can be treated in an unified manner without abandoning the mathematical system of geometric algebra for instance: multilinear algebra, projective and affine geometry, calculus on manifolds, Riemann geometry, the representation of Lie algebras and Lie groups using bivector algebras and conformal geometry. By treating a wide spectrum of problems in a common language, this Volume I offers both new insights and new solutions that should be useful to scientists, and engineers working in different areas related with the development and building of intelligent machines. Each chapter is written in accessible terms accompanied by numerous examples, figures and a complementary appendix on Clifford algebras, all to clarify the theory and the crucial aspects of the application of geometric algebra to problems in graphics engineering, image processing, pattern recognition, computer vision, machine learning, neural computing and cognitive systems.
2021-10-28 23:37:50 17.3MB 计算机视觉
1
Digital Signal Processing Principles Algorithms and Applications 3rd Edition 数字信号处理神作 推荐
2021-10-28 21:40:45 25.1MB DSP 数字信号处理 算法
1
RMT_Theory_Applications 随机矩阵理论的一些重要性质及其在多个领域中的应用
2021-10-28 14:32:17 888KB JupyterNotebook
1
带有React.js的AWS Cognto Auth教程 这是使用AWS Amplify和Cognito的“在React App中创建无服务器身份验证”的入门ReactJS UI。 申请信息 该项目是通过引导的。 可用脚本 在项目目录中,可以运行: npm start 在开发模式下运行应用程序。 打开在浏览器中查看它。 如果您进行编辑,则页面将重新加载。 您还将在控制台中看到任何棉绒错误。 npm test 在交互式监视模式下启动测试运行器。 有关更多信息,请参见关于的部分。 npm run build 构建生产到应用程序build文件夹。 它在生产模式下正确捆绑了React,并优化了构建以获得最佳性能。 生成被最小化,并且文件名包括哈希值。 您的应用已准备好进行部署! 有关更多信息,请参见关于的部分。 npm run eject 注意:这是单向操作。 eject ,您将无法
1