在本次提交中,介绍了船舶的非线性动力学模型。 收集船舶操纵数据并使用 Matlab:registered: System Identification Toolbox 执行系统识别。 在Section_3文件夹中运行Chapter_4_Section_3.m以模拟飞船并执行系统识别。 它还将绘制系统识别的结果。 运行Section_4文件夹中的Chapter_4_Section_4_Script.m,获得书中提供的练习的解决方案。 它为船舶生成另一个模拟,并计算船舶的离散稳态模型。 有关更多信息,请阅读第 4 章。
2024-01-25 21:14:01 5.83MB matlab
1
贝叶斯算法(bayes)优化随机森林的数据回归预测,bayes-RF回归预测,多变量输入模型。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-01-23 09:06:13 60KB 随机森林
1
本文通过实战案例讲解TPA-LSTM实现多元时间序列预测,在本文中所提到的TPA和LSTM分别是注意力机制和深度学习模型,通过将其结合到一起实现时间序列的预测,本文利用有关油温的数据集来进行训练模型,同时将模型保存到本地,进行加载实现多步长预测,本文所利用的数据集也可以替换成你个人的数据集来进行预测(修改个人的数据集的地方本文也进行了标注),同时本文会对TPA和LSTM分别进行概念的讲解帮助大家理解其中的运行机制原理(包括个人总结已经论文内容)。TPA(Temporal Pattern Attention)注意力机制是一种用于处理时间序列数据的注意力机制。它的工作原理是在传统的注意力机制的基础上引入了时间模式的概念,以更好地捕捉时间序列中的重要模式和特征。LSTM(长短期记忆,Long Short-Term Memory)是一种用于处理序列数据的深度学习模型,属于循环神经网络(RNN)的一种变体,其使用一种类似于搭桥术结构的RNN单元。相对于普通的RNN,LSTM引入了门控机制,能够更有效地处理长期依赖和短期记忆问题,是RNN网络中最常使用的Cell之一。配合我的博客大家可以实现预测。
2024-01-21 09:53:02 2.04MB LSTM 深度学习 人工智能 时间序列预测
1
%% 数据归一化 [p_train, ps_input] = mapminmax(P_train, 0, 1); p_test = mapminmax('apply', P_test, ps_input); [t_train, ps_output] = mapminmax(T_train, 0, 1); t_test = mapminmax('apply', T_test, ps_output); %% 转置以适应模型 p_train = p_train'; p_test = p_test'; t_train = t_train'; t_test = t_test'; %% 创建网络 k = 7; % 保留成分个数 [theta, ch0] = my_pls(p_train, t_train, k); %% 仿真测试 t_sim1 = sim_pls(p_train, theta, ch0); t_sim2 = sim_pls(p_test , theta, ch0); %% 数据反归一化 T_sim1 = mapminmax('reverse', t_sim
2024-01-19 09:57:36 15KB matlab 数据集
1
$$ \ mu \ nu \ mathrm {SSM} $$μνSSM是标准模型(SM)的简单超对称扩展,能够与实验一致地预测中微子物理学。 在本文中,我们用混合壳上/ $$ {中的一代右手中微子对$$ \ mu \ nu \ mathrm {SSM} $$μνSSM的中性标量扇区执行完整的一环重整化。 \ overline {\ mathrm {DR}}} $$DR¯方案。 将详细讨论重归一化过程,着重说明与最小重(MSSM)和次最小(NMSSM)超对称标准模型在字段重归一化和非风味对角软质量参数处理方面的概念差异 在$$ \ mu \ nu \ mathrm {SSM} $$μνSSM中打破R奇偶性。 我们计算对$$ \ mu \ nu \ mathrm {SSM} $$μνSSM的中性标量质量的完整一环修正。 单环贡献由可用的MSSM高阶校正补充。 我们获得了与实验范围一致的类似SM的希格斯玻色子质量的数值结果。 我们将我们的结果与NMSSM中的预测进行比较,以得出真实的$$ \ mu \ nu \ mathrm {SSM} $$μνSSM类贡献的显着性的度量。 由于中微子Yu
2024-01-17 10:15:50 1.49MB Open Access
1
为解决高瓦斯煤层采空区自然发火和瓦斯涌出量过大造成上隅角瓦斯超限的问题,结合O形圈理论,对采空区的渗流特性进行了分析。通过引进Ergun单相流半经验非线性渗流公式,结合连续性方程、动量方程、瓦斯动力弥散方程,建立了采空区流场的渗流模型;利用Fluent软件,结合具体实例,模拟预测并分析了采空区的风流速度场及瓦斯浓度场。模拟结果表明:根据O形圈理论以及渗流模型,利用Fluent软件进行模拟的结果符合实际情况,通过制定相应措施,提前消除了潜在的安全隐患。
2024-01-16 17:46:19 227KB 行业研究
1
本项目利用网络爬虫技术从某天气预报网站抓取某一城市的历史天气数据,构建天气数据分析与预测系统,实现对天气状况、最高气温、最低气温、风力和风向等维度的可视化分析和横向纵向比较, 并构建机器学习聚类算法实现对天气数据的预测分析。
2024-01-16 00:02:15 58B 机器学习 数据分析 网络爬虫 Python
1
为有效挖掘瓦斯涌出量监测数据隐含特征,预防瓦斯动力灾害,基于希尔伯特-黄变换(HHT)方法、布谷鸟搜索算法(CS)和极限学习机(ELM)基本理论,构建了瓦斯涌出量的HHT-CSELM动态预测模型。通过EMD将样本序列分解成多个不同频率的本征模态函数(IMF)分量;利用Hilbert变换获取各分量的瞬时频率,并据此将IMF分量划分成较高频和低频,采用不同的预测模型进行预测,经叠加各预测值得到最终预测结果。以汾西矿业集团某矿瓦斯涌出量监测数据为例进行仿真实验,结果表明:HHT方法能有效降低数据复杂度,其最小相对误差为0.144%,最大相对误差为0.388%,平均相对误差为0.281%,具有较高的预测精度和泛化能力;更好地适用于非平稳时间序列预测。
2024-01-15 23:40:20 291KB 行业研究
1
为提高工作面瓦斯涌出量预测的效率和准确率,提出了一种将遗传算法(GA)与极限学习机(ELM)相结合的瓦斯涌出量预测的新方法。为了避免ELM受输入权值矩阵和隐含层偏差随机性的影响,算法采用GA对ELM的输入权值矩阵和隐含层偏差进行优化,建立GA-ELM瓦斯涌出量预测模型。利用某矿瓦斯涌出量相关数据对该模型进行了实例分析,将ELM、SVM和BP算法预测结果与该模型进行了对比分析。结果表明:GA-ELM模型具有较高的预测精度,可以相对准确、高效地对工作面的瓦斯涌出量进行预测。
1
在之前的文章中我们已经讲过Informer模型了,但是呢官方的预测功能开发的很简陋只能设定固定长度去预测未来固定范围的值,当我们想要发表论文的时候往往这个预测功能是并不能满足的,所以我在官方代码的基础上增添了一个滚动长期预测的功能,这个功能就是指我们可以第一次预测未来24个时间段的值然后我们像模型中填补 24个值再次去预测未来24个时间段的值(填补功能我设置成自动的了无需大家手动填补),这个功能可以说是很实用的,这样我们可以准确的评估固定时间段的值,当我们实际使用时可以设置自动爬取数据从而产生实际效用。本文修改内容完全为本人个人开发,创作不易所以如果能够帮助到大家希望大家给我的文章点点赞,同时可以关注本专栏(免费阅读),本专栏持续复现各种的顶会内容,无论你想发顶会还是其它水平的论文都能够对你有所帮助。 时间序列预测在许多领域都是关键要素,在这些场景中,我们可以利用大量的时间序列历史数据来进行长期预测,即长序列时间序列预测(LSTF)。然而,现有方法大多设计用于短期问题,如预测48点或更少的数据。随着序列长度的增加,模型的预测能力受到挑战。例如,当预测长度超过48点时,LSTM网络的预测
2024-01-15 21:00:38 1.01MB 毕业设计 个人开发 网络 网络
1