判别近邻嵌入算法(discriminant neighborhood embedding,DNE)通过构造邻接图,使得在投影子空间中能够保持原始数据的局部结构,能有效地发现最佳判别方向。但是它有两方面的不足:一方面不能标识样本点的近邻样本点位置信息,从而不能更好地保持邻域结构;另一方面当数据不均衡时,不能实现子空间中类内聚合或者类间分离的目的,这不利于分类。为此提出了一种新的有监督子空间学习算法――局部平衡的判别近邻嵌入算法(locality-balanced DNE,LBDNE)。在构建邻接图时,局部平
2022-04-29 21:20:04
1.27MB
工程技术
论文
1