主要介绍了keras-siamese用自己的数据集实现详解,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2022-03-17 12:57:01 198KB keras siamese 数据集
1
课程分为两条主线: 1 从Tensorflow的基础知识开始,全面介绍Tensorflow和Keras相关内容。通过大量实战,掌握Tensorflow和Keras经常用到的各种建模方式,参数优化方法,自定义参数和模型的手段,以及对训练结果评估与分析的技巧。 2 从机器学习基础算法开始,然后进入到图像分类领域,使用MNIST手写数据集和CIFAR10图像数据集,从简单神经网络到深度神经网络,再到卷积神经网络,最终完成复杂模型:残差网络的搭建。完成这条主线,学员将可以自如地使用机器学习的手段来达到图像分类的目的。
2022-03-17 11:37:12 19.16MB class 人工智能 计算机视觉 深度学习
1
Keras中的Conv1D公路网,Tensorflow2.x和pytorch
2022-03-17 10:27:56 7KB Python
1
主要介绍了浅谈keras保存模型中的save()和save_weights()区别,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2022-03-16 14:54:34 98KB keras 保存模型 save save_weights
1
Keras项目实战课程从实战的角度出发,基于真实数据集与实际业务需求,从零开始讲解如何进行数据处理,模型训练与调优,最后进行测试与结果展示分析。全程实战操作,以最接地气的方式详解每一步流程与解决方案。课程结合当下深度学习热门领域,以计算机视觉与自然语言处理为核心讲解各大网络的应用于实战方法,适合快速入门与进阶提升。
2022-03-15 21:20:10 261B 人工智能 Keras 机器学习
1
MatchPyramid用于语义匹配 MatchPyramid模型的简单Keras实现,用于语义匹配。 请参考论文: 快速浏览 输入数据格式 火车/有效套票: label |q1 |q2 1 |Q2119 |D18821 0 |Q2119 |D18822 测试集: q1 |q2 Q2241 |D19682 Q2241 |D19684 预处理语料库: qid |words D9980 |47 0 1 2 3 4 5 6 7 8 9 10 D5796 |21 40 41 42 43 44 14 45 字词嵌入: word |embedding (50-dimension) 28137 |-0.54645991 2.28509140 ... -0.34052843 -2.01874685 8417 |-9.01635551 -3.80108356 ... 1.86873138 2.147
1
DnCNN-keras 的论文的keras实现 依存关系 tensorflow keras2 numpy opencv 准备火车数据 $ python data.py 干净的补丁程序是从“ data / Train400”中提取的,并保存在“ data / npy_data”中。 火车 $ python main.py 训练有素的模型将保存在“快照”中。 测试 $ python main.py --only_test True --pretrain 'path of saved model' 噪点和去噪图像保存在“快照”中。 结果 高斯去噪 BSD68数据集上不同方法的平均PSNR(dB)结果。 噪音等级 BM3D 神经网络 DnCNN-keras 25 28.57 29.23 29.21
2022-03-14 14:15:55 15.68MB 附件源码 文章源码
1
记录一下: # Three loss functions category_predict1 = Dense(100, activation='softmax', name='ctg_out_1')( Dropout(0.5)(feature1) ) category_predict2 = Dense(100, activation='softmax', name='ctg_out_2')( Dropout(0.5)(feature2) ) dis = Lambda(eucl_dist, name='square')([feature1, feature2]) judge = Den
2022-03-14 10:32:43 62KB AS keras oss
1
亚马逊评论情绪分析 情感分析一直在增长-既由于深度学习中使用了新的分析技术,又因为到处都有大量的数据生成。 每条产品评论,每条推文,每条Reddit帖子等均包含我们希望能够处理和理解的主观信息。 例如,假设您是Netflix。 然后,您对客户对您的服务和电视节目/电影选择要说的话非常感兴趣,并且您可能会希望挖掘Facebook帖子和推文以及IMDB评论等,以评估公众意见。 如果您是一名政客,那么您(希望)对选民的想法,他们想要什么,他们持有哪些宝贵价值观等感兴趣,因此您可能会有一个团队来分析这些领域的公众情绪。 如果您是企业家,那么您会对公众舆论感兴趣,因为它关系到您的利基,产品和竞争,因为
1
我就废话不多说了,大家还是直接看代码吧! import keras from keras.datasets import cifar10 from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Conv2D, MaxPooling2D, BatchNormalization from keras
2022-03-09 16:03:01 86KB AS IF keras
1