态势感知 (SA) 已被认为是电力系统稳定和安全运行的关键保证,尤其是在可再生能源整合后的复杂不确定性下。在本文中,提出了一种人工智能驱动的解决方案,以实现涵盖感知,理解和预测的SA的全面实现,其中最后一个是更先进但具有挑战性的,因此以前没有在任何文献中讨论过。通过聚合两个强大的深度学习结构,提出了一种新颖的SA模型: 卷积神经网络 (CNN) 和长期短期记忆 (LSTM) 递归神经网络。提出的CNN-LSTM模型具有在时空测量数据上实现协作数据挖掘的优势,即从相量测量单元数据中同时学习时空特征。在SA模型中设计了两个功能分支: 应急定位器 (用于检测当前的确切故障位置) 和稳定性预测器 (用于预测将来系统的稳定性状态)。测试一下结果表明,即使在较低的数据充分性水平下,该模型也具有很高的性能 (准确性)。
2022-10-10 21:05:37 3.92MB 机器学习在态势感知领域的应用
1
基线、线性、DNN、LSTM单步模型学习代码
2022-10-10 17:05:31 10KB 时序模型 深度学习
1
基线、线性、DNN、LSTM多步模型学习代码
2022-10-10 17:05:30 10KB 时序模型 深度学习
1
基线、线性、DNN、LSTM多输出模型学习代码
2022-10-10 17:05:29 11KB 时序模型 深度学习
1
通过图表示学习预测患者结果 该存储库包含用于通过“图形表示​​学习”预测患者结果的代码。 您可以在以下网址观看W3PHIAI(AAAI研讨会)上的聚焦演讲视频: 引文 如果您在研究中使用此代码或模型,请引用以下内容: @misc{rocheteautong2021, title={Predicting Patient Outcomes with Graph Representation Learning}, author={Emma Rocheteau and Catherine Tong and Petar Veličković and Nicholas Lane and Pietro Liò}, year={2021}, eprint={2101.03940}, archivePrefix={arXiv}, p
2022-10-04 21:50:43 165KB Python
1
单因素、多因素、ConvLSTM预测、单步预测多步预测、数据处理
2022-09-29 21:05:15 272.36MB python
1
使用深度学习预测股票市场 在这个项目中,我使用称为LSTM的最佳深度学习算法之一来预测和预测Amazon Inc.的价格。
2022-09-29 10:45:58 272KB JupyterNotebook
1
lstm 多输入 多输出 负荷预测 pytorch 直接可跑 有数据
2022-09-26 21:05:13 8KB lstm 时间序列 多输入 多输出
1
拉丹 自适应学习率的方差及超越 我们处于早期版本的Beta中。 期待一些冒险和艰难的边缘。 目录 介绍 如果热身是答案,那么问题是什么? Adam的学习速度预热是在某些情况下(或eps调整)进行稳定训练的必备技巧。 但是基本机制尚不清楚。 在我们的研究中,我们提出一个根本原因是自适应学习率的巨大差异,并提供理论和经验支持证据。 除了解释为什么要使用预热之外,我们还提出RAdam ,这是Adam的理论上合理的变体。 动机 如图1所示,我们假定梯度遵循正态分布(均值:\ mu,方差:1)。 模拟了自适应学习率的方差,并将其绘制在图1中(蓝色曲线)。 我们观察到,在训练的早期阶段,自适应学习率具有很大的差异。 将变压器用于NMT时,通常需要进行预热阶段以避免收敛问题(例如,图2中的Adam-vanilla收敛于500 PPL左右,而Adam-warmup成功收敛于10 PPL以下)。 在进
2022-09-26 17:47:33 650KB optimizer adam warmup adam-optimizer
1
使用lstm完成时间序列预测,一次预测一个时间步,并且使用该时间步作为输入。
2022-09-24 12:05:25 3KB 时间序列 pytorch
1