[COEFF,分数,隐藏,特例] = fastpca(数据)
非常高维数据的快速主成分分析(例如神经影像数据的体素级分析),根据 C. Bishop 的书“模式识别和机器学习”,第 10 页实施。 570.对于高维数据,fastpca.m比MATLAB的内置函数pca.m快得多。 根据 MATLAB 的 PCA 术语,fastpca.m 需要一个输入矩阵,每行代表一个观察(例如主题),每列代表一个维度(例如体素)。 fastpca.m 返回主成分 (PC) 载荷 COEFF、PC 分数 (SCORE)、PC 以绝对值 (LATENT) 和百分比 (EXPLAINED) 解释的方差。 此外,fastpca 返回小协方差矩阵 (COEFF) 的 PC 负载。
计算时间的减少是通过从转置的输入矩阵“数据”的(较小)协方差矩阵而不是原始输入矩阵的大协方差矩阵中计算出PC来计算的,然后将这
2021-09-19 01:01:01
2KB
matlab
1