本文将详细展示一个多类支持向量机分类器训练iris数据集来分类三种花。 SVM算法最初是为二值分类问题设计的,但是也可以通过一些策略使得其能进行多类分类。主要的两种策略是:一对多(one versus all)方法;一对一(one versus one)方法。 一对一方法是在任意两类样本之间设计创建一个二值分类器,然后得票最多的类别即为该未知样本的预测类别。但是当类别(k类)很多的时候,就必须创建k!/(k-2)!2!个分类器,计算的代价还是相当大的。 另外一种实现多类分类器的方法是一对多,其为每类创建一个分类器。最后的预测类别是具有最大SVM间隔的类别。本文将实现该方法。 我们将加载iris
2022-06-29 13:36:25 137KB iris ns OR
1
matlab里支持向量机工具箱,好用-matlab in Support Vector Machine Toolbox, 易于使用
2022-06-26 20:03:47 116KB matlab 向量机工具箱
支持向量机作为非参数方法已经广泛应用于信用评估领域.为克服其训练高维数据不能主动进行特征选择导致准确率下降的缺点,构建C4.5决策树优化支持向量机的信用评估模型.利用C4.5信息熵增益率方法进行属性选择,减少冗余属性.模型通过网格搜索确定最优参数,使用F-score和平均准确率评价模型性能,并在两组公开数据集上进行验证.实证分析表明,C4.5决策树优化支持向量机的信用评估模型有效减少了数据学习量,较于传统各类单一模型有较高的分类准确率和实用性.
1
支持向量机,Support Vector Machine(SVM),多分类
2022-06-19 17:05:19 114KB svm 支持向量机 python 机器学习
SVM支持向量机分类鸢尾花数据集iris(jupyter实现) 附带可视化图片
2022-06-19 17:05:18 81KB jupyter svm 机器学习
使用多种方法完成MNIST分类任务 Python 3.6 Pytorch 1.0 Scikit-learn 0.21 无需下载数据直接跑,代码自动下载 逻辑回归 Logistic Regression 多层感知机 MLP K近邻 KNN 支持向量机 SVM 卷积神经网络 CNN 循环神经网络 RNN
2022-06-19 17:05:18 1.04MB SVM CNN RNN KNN
支持向量机,是常见的一种判别方法。在机器学习领域,是一个有监督的学习模型,通常用来进行模式识别、分类以及回归分析。
2022-06-18 20:13:14 3.19MB SVM 支持向量机
1
基于SVM(支持向量机) 的人脸识别 matlab 代码 基于SVM(支持向量机) 的人脸识别 matlab 代码 基于SVM(支持向量机) 的人脸识别 matlab 代码
2022-06-18 18:29:19 7KB 人脸识别 SVM matlab svm人脸识别m
1
本资源包括使用支持向量机(SVM)算法进行人脸识别预测的全部源码 SVM就是帮我们找到一个超平面,这个超平面能将不同的样本划分开,同时使得样本集中的点到这个分类超平面的最小距离(即分类间隔)最大化。 支持向量机算法(Support Vector Machine,SVM),是一种二分类模型。 对于二分类问题,如果我们从数据集是否线性可分角度来看的话(线性可分通俗理解就是画一条直线,可以直接将两种类型的数据分开),可以将数据分为三种类型,一类是线性可分的、一类是近似线性可分(有一些异常点导致无法线性可分)、一类是线性不可分。 这三种场景对应的SVM的算法分别是硬间隔SVM、软间隔SVM和非线性SVM。 本案例使用支持向量机(SVM)算法实现人脸识别功能。 算法内容包括: 1、获取数据集 2、数据划分 3、PCA特征提取 4、使用线性SVM进行预测 5、交叉验证 6、超参数调优 7、预测结果分析 8、混淆矩阵评估
2022-06-17 16:06:30 206KB SVM 人脸识别 支持向量机