使用TensorFlow实现卷积神经网络的手写字符识别,可重新训练网络
2022-08-11 09:07:18 10.03MB python 卷积神经网络 手写字符识别
1
资源包含文件:设计报告word+源码+演示PPT 对卷积神经网络的研究始于二十世纪80至90年代,时间延迟网络和LeNet-5是最早出现的卷积神经网络;在二十一世纪后,随着深度学习理论的提出和数值计算设备的改进,卷积神经网络得到了快速发展,并被应用于计算机视觉、自然语言处理等领域。 详细介绍参考:https://blog.csdn.net/newlw/article/details/125167714
2022-08-10 11:19:43 5.95MB C语言 MATLAB 卷积神经网络 课程设计
  深度神经网络(DNN)在各种任务中取得了前所未有的成功,但是,这些模型性能直接取决于它们的超参数的设置。在实践中,优化超参数仍是设计深度神经网络的一大障碍。在这项工作中,我们建议使用粒子群优化算法(PSO)来选择和优化模型参数。在MNIST数据集上的实验结果显示:通过PSO优化的CNN模型可以得到不错的分类精度,此外,PSO 还可以提高现有模型结构的性能,PSO是自动化超参数选择和有效利用计算资源的有效技术。 针 对CNN 算法的收敛速度较慢、过 拟合 等问题, 文章提出一种基于PSO和 CNN 模型的图像分类方法,在分析完CNN各超参数对其性能的影响后,引入 PSO 算法进行寻优以增强CNN网络模型的特征提取能力,模型将CNN算法中需要训练的参数作为粒子进行优化,将 更 新 的 参 数 用 于CNN 算 法 的 前 向 传播,调整网络连接权矩阵迭代,直到误差收敛,停止算法,以达到最终的模型优化。
2022-08-08 11:05:49 12KB PSO-CNN PSO CNN PSO优化CNN参数
1
中国象棋棋子定位采用的传统图像处理方法,复杂度高;识别棋子采用的传统文字识别方法,泛化性较差、精确度较低。提出一种基于棋子颜色特征的分割方法和改进的二值图像滤波算法,实现了棋子的快速定位,不需要二次修正位置;提出一种基于卷积神经网络的棋子识别方法,该方法可以应用于不同字体的棋子识别,在更换棋子的情况下,依然可以快速、准确地识别棋子。实验结果表明,该方法的定位误差为0.51 mm,平均定位时间0.212 s,对4类字体的平均棋子识别准确率为98.59%左右,证实了该方法的有效性和实用性。
2022-08-08 08:22:44 8.61MB 图像处理 卷积神经 二值图像 深度学习
1
实验中所使用的样本来自点火实验中所拍摄的现场图片以及网络上森林火灾的相关图片。训练集中有 968 张森林背景图片,946 张复杂的森林火灾图片;测试集中有80 张森林背景图片,102 张复杂的森林火灾图片。训练集与测试集每一张图片均不重复。      针对森林火灾的特点,提出并设计一种基于卷积神经网络的森林火灾图像识别方法。通过实验,给出用于复杂背景下森林火灾识别的卷积神经网络结构,并对该结构进行训练和测试。结果表明,该方法具备较高的正确率,正确率达到 95% 。同时网络可自动提取特征,无需对输入图像进行复杂预处理,克服了传统算法许多固有的缺点,将其应用在森林火灾识别领域取得了很好的效果。最后,我们结合flaks框架构建了一个森林大火识别的API,在该系统下,我们通过后端调用模型,在页面中选择上传的图片,便可获得预测结果。
1
cnn卷积神经网络
2022-08-03 13:07:43 6KB 卷积神经网络
1
tensorflow2.3-keras使用卷积神经网络CNN实现cifar10图像分类源码+数据集+注释+模型加载保存
2022-07-29 17:05:54 317.84MB keras tensorflow 深度学习 卷积神经网络
1
matlab插值代码解释FSRCNN 由Pytorch和Matlab复制《加速超分辨率卷积神经网络》(CVPR 2016)论文。 依存关系 Matlab 2016 火炬1.0.0 解释 论文作者url:提供的一些Matlab代码。 使用两种语言进行项目的主要原因是因为双三次插值的实现方式不同,这导致使用PSNR标准时结果的差异更大。 概述 网络概述和与SRCNN的比较: 用法 使用./data_pro/data_aug.m进行扩充。 使用./data_pro/generate_train.m生成train.h5。 使用./data_pro/generate_test.m生成test.h5。 乘坐train.py火车: python train.py 将Pytorch模型.pkl转换为Matlab矩阵.mat。 (weights.pkl-> weights.mat) python convert.py 使用./test/demo_FSRCNN.m获得结果。 结果 使用./model/weights.mat可以得到结果: Set5平均:重建PSNR = 32.52dB VS双三次PSNR
2022-07-28 20:39:21 7.89MB 系统开源
1
针对遥感图像中的目标检测问题,采用基于卷积神经网络的目标检测框架对目标进行提取,针对该网络制作了包含三类遥感图像中常见目标的目标检测数据集。为了解决遥感图像目标旋转角度较大的问题,将空间变换网络融入超快区域卷积神经网络,提出了一种具有旋转不变性自学习能力的目标检测模型。通过与传统的目标检测方法进行对比分析,探究了不同方法对遥感图像目标检测的实际效果。相对于传统的目标检测方法,融合了空间变换网络的卷积神经网络所提取的特征具有更好的旋转不变特性,从而能够达到更高的检测精度。
2022-07-28 15:38:48 1.16MB 图像处理 卷积神经 空间变换 目标检测
1
根据用户浏览新闻次数,使用textcnn卷积神经网络技术进行推荐,使用jupyter notebook开发。
2022-07-27 11:05:31 6.7MB 卷积神经网络 推荐系统
1