针对轴承振动信号非线性、非平稳性和故障特征微弱性的特点,以及工程实际中难以获得大量故障样本的情况,提出了一种基于多尺度排列熵和支持向量机的轴承故障诊断新方法。该方法首先对轴承不同运行状态下的振动信号进行多尺度排列熵特征提取,然后通过距离评估技术从原始多尺度排列熵特征中选取敏感特征,最后将敏感特征输入到采用遗传算法优化的支持向量机中,实现对轴承不同运行状态的自动识别。对实验数据分析的结果表明,该方法可以精细地获取故障信息,从大量原始特征中选择出敏感特征,有效地实现滚动轴承故障状态的诊断。
1
通过matlab代码实现PCA算法程序设计步骤: 包括1、去均值 2、计算协方差矩阵及其特征值和 vxkKar 特征向量 3、计算协方差矩阵的特征值大于阈值的个数以及 XwPcugM值 4、降序排列特征值,编译通过达到很高的性能。
2022-11-02 10:54:22 4KB 矩阵特征向量
1
minkowski_addition 计算点的两个向量的Minkowski和(集合扩张)
2022-11-01 21:24:22 6KB C++
1
vectfit.py Python中复制。 若要使用,请将vectfit.py放在路径上的某个位置 import vectfit import numpy as np # Create some test data using known poles and residues # Substitute your source of data as needed # Note our independent variable lies along the imaginary axis test_s = 1j * np . linspace ( 1 , 1e5 , 800 ) # Poles are produced in complex conjugate pairs test_poles = [ - 4500 , - 41000 , - 100 + 5000j
2022-11-01 20:24:06 11KB Python
1
Knowhere 是下层向量查询库(如Faiss、HNSW、Annoy)和上层服务调度之间的操作接口。同时,异构计算也由 Knowhere 这一层来控制,用于管理索引的构建和查询操作在何种硬件上执行。
2022-11-01 14:06:52 1.97MB Knowhere 向量查询库 Faiss HNSW
1
Milvus 是一款全球领先的开源向量数据库,赋能 AI 应用和向量相似度搜索,加速非结构化数据检索。用户在任何部署环境中均可获得始终如一的用户体验。 Milvus 2.0 是一款云原生向量数据库,采用存储与计算分离的架构设计。
1
双SVM 双支持向量机的MATLAB实现 参考文件: Jayadeva,Khemchandani,R。和Suresh Chandra。 “ ”关于模式分析和机器智能的IEEE事务29.5(2007):905-910。
2022-11-01 10:43:06 11KB MATLAB
1
可以输入同样维数的x,y向量,然后调用该函数,可以求出差商表,并求解出牛顿迭代函数
1
变压器绕组的热点温度过高,会导致变压器绝缘脆解、裂化甚至击穿短路。因此及时、准确地预测出变压器绕组的热点温度,对提高变压器运行的安全可靠性至关重要。利用最小二乘双支持向量回归机(LSTSVR)作为边缘计算模型,将变压器油中气体色谱分析数据信息与变压器负载电流、环境温度、顶层油温、上死角温度等变压器运行信息结合,构建监测系统架构,预测变压器的平均油温,并计算出绕组热点温度。将所提方法得到的数据与实测数据进行对比,结果利用LSTSVR模型实现了变压器平均油温及绕组热点温度的准确预测,且该模型的预测精度优于最小二乘支持向量回归机模型,有效地提高了绕组热点温度测量的精度。现场实例也证明了所提方法的有效性和可靠性。
1
使用Jacobi方法求取对称矩阵特征值和特征向量,vs2008下的
2022-10-28 08:13:37 19KB jacobi 特征值 特征向量
1