简单遗传编程 对于符号回归 此Python 3代码是用于符号回归的遗传编程的简单实现,并且已出于教育目的而开发。 依存关系 numpy和sklearn 。 文件test.py显示了用法示例。 安装 您可以使用python3 -m pip install --user simplegp通过python3 -m pip install --user simplegp ,也可以通过下载代码并运行python3 setup.py install --user在本地进行python3 setup.py install --user 。 参考 如果您使用此代码,请通过引用(或为此)代码所针对的我们的一部或多部作品来支持我们的研究: M. Virgolin,A。De Lorenzo,E。Medvet,F。Randone。 “学习可解释性的公式以学习可解释的公式”。 ,施普林格(2020)。 ( )
1
dm_env :DeepMind RL环境API 该软件包描述了用于Python强化学习(RL)环境的界面。 它由以下核心组件组成: dm_env.Environment :RL环境的抽象基类。 dm_env.TimeStep :一个容器类,表示每个时间步(过渡)上环境的输出。 dm_env.specs :一个模块,包含用于描述环境消耗的动作的格式以及其返回的观察值,奖励和折扣的原语。 dm_env.test_utils :用于测试具体环境实现是否符合dm_env.Environment接口的工具。 请参阅的文档以获取有关环境接口的语义以及如何使用它的更多信息。 子目录还包含使用dm_env接口实现的RL环境的说明性示例。 安装 dm_env可以使用pip从PyPI安装: pip install dm-env 请注意,从1.4版开始,我们仅支持Python 3.6+。 您还
1
吴恩达机器学习 jupyter note版本编程作业 线性回归 linear regression 机器学习与数据挖掘
2022-10-09 18:07:05 470KB 机器学习 linearregressio 线性回归
1
吴恩达机器学习 logistics regression jupyter note版本编程作业 机器学习与数据挖掘
2022-10-09 18:07:04 718KB 机器学习 逻辑回归 数据挖掘
1
吴恩达机器学习 Neural Networks for Binary Classification Jupyter note版本编程作业 机器学习与数据挖掘
2022-10-09 18:07:03 13.45MB 机器学习 数据挖掘 神经网络
1
Neural Networks for Handwritten Digit Recogn 吴恩达机器学习 jupyter note 版本编程作业 机器学习与数据挖掘 用神经网络识别手写数字0-9
2022-10-09 18:07:02 6.86MB 机器学习 神经网络 数据挖掘
1
machine leaning 谷歌课程
2022-10-09 13:05:29 1.75MB machine learning
1
GROBID GROBID文档 请访问以获取更多详细信息。 概要 GROBID(或Grobid,但不是GroBid或GroBiD)表示书目数据的生成。 GROBID是一个机器学习库,用于将原始文档(例如PDF)提取,解析和重组为结构化XML / TEI编码的文档,尤其侧重于技术和科学出版物。 最早的发展始于2008年,是一种业余爱好。 在2011年,该工具已以开源形式提供。 自开始以来,作为副项目的GROBID工作就一直稳定,并有望继续进行。 可以使用以下功能: 从PDF格式的文章中提取标题并进行解析。 这里的摘录涵盖了通常的书目信息(例如标题,摘要,作者,隶属关系,关键字等)。 从.
2022-10-08 16:15:35 277.11MB metadata pdf machine-learning deep-learning
1
用于构建高质量数据集和计算机视觉模型的开源工具。 •• •••• 是由创建的开源ML工具,可帮助您构建高质量的数据集和计算机视觉模型。 使用FiftyOne,您可以搜索,排序,过滤,可视化,分析和改善数据集,而无需进行过多的整理或编写自定义脚本。它还提供了用于分析模型的强大功能,使您能够了解模型的优缺点,可视化,诊断和纠正其故障模式,等等。 FiftyOne的设计轻巧,可轻松集成到您现有的CV / ML工作流程中。 您可以加入我们的Slack社区,阅读我们在Medium上的博客,并在社交媒体上关注我们,从而参与其中: 安装 您可以通过pip安装FiftyOne的最新稳定版本: pip install fiftyone 请查阅以获取故障排除以及有关使用FiftyOne进行启动和运行的其他信息。 快速开始 通过启动快速入门,直接进入FiftyOne: fiftyone quicksta
1
About This Book, Leverage Python' s most powerful open-source libraries for deep learning, data wrangling, and data visualization, Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms, Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets, Who This Book Is For, If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource., What You Will Learn, Explore how to use different machine learning models to ask different questions of your data, Learn how to build neural networks using Keras and Theano, Find out how to write clean and elegant Python code that will optimize the strength of your algorithms, Discover how to embed your machine learning model in a web application for increased accessibility, Predict continuous target outcomes using regression analysis, Uncover hidden patterns and structures in data with clustering, Organize data using effective pre-processing techniques, Get to grips with sentiment analysis to delve deeper into textual and social media data, Style and approach, Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.
2022-10-07 05:17:15 8.63MB Python Machine Learning
1