wgs全基因组序列比对流程 用到的软件 过程步骤 一. 下载准备需要的文件 下载参考序列基因组文件 1.建立索引 bwa index ref.fasta 完成之后 会看到几个ref.fasta为前缀的文件 为参考序列生成dict文件 gatk CreateSequenceDictionary -R ref.fasta -O ref.dict samtools 建索引 samtools faidx ref.fasta 下载测序文件 fastaq-dump --split-files SRR***** 下载的文件是双末端测序从两端读的read1和read2 >> 用bgzip压缩 bgzip seq1_.fasta bgzip seq2_.fasta 二.处理文件 将read比对到参考基因组 bwa mem -t 4 -R '@RG\tID:foo\tPL:illumina\tSM:
2022-10-07 09:31:29 37KB HTML
1
The use of MATLAB is ubiquitous in the scientific and engineering communities today, and justifiably so. Simple programming, rich graphic facilities, built-in functions, and extensive toolboxes offer users the power and flexibility they need to solve the complex analytical problems inherent in modern technologies. The ability to use MATLAB effectively has become practically a prerequisite to success for engineering professionals. Like its best-selling predecessor, Electronics and Circuit Analysis Using MATLAB, Second Edition helps build that proficiency. It provides an easy, practical introduction to MATLAB and clearly demonstrates its use in solving a wide range of electronics and circuit analysis problems. This edition reflects recent MATLAB enhancements, includes new material, and provides even more examples and exercises. New in the Second Edition: · Thorough revisions to the first three chapters that incorporate additional MATLAB functions and bring the material up to date with recent changes to MATLAB · A new chapter on electronic data analysis · Many more exercises and solved examples · New sections added to the chapters on two-port networks, Fourier analysis, and semiconductor physics · MATLAB m-files available for download Whether you are a student or professional engineer or technician, Electronics and Circuit Analysis Using MATLAB, Second Edition will serve you well. It offers not only an outstanding introduction to MATLAB, but also forms a guide to using MATLAB for your specific purposes: to explore the characteristics of semiconductor devices and to design and analyze electrical and electronic circuits and systems
2022-10-03 20:23:41 1.68MB MatLab Electronics and Circuit
1
Product failure Reliability Analysis using Minitab
2022-09-27 20:24:47 21.99MB Aaron
1
西门子模态分析高级培训教程,2016年西门子高级模态培训会议PPT
2022-09-27 14:19:31 27.57MB modal analysis
1
AndroPy工具 更新! DroidBox图像是固定的。 动态分析现在正在工作。 这是一个用于从Android APK中提取静态和动态功能的工具。 它结合了各种著名的Android应用程序分析工具,例如DroidBox,FlowDroid,Strace,AndroGuard或VirusTotal分析。 提供了包含APK文件的源目录,AndroPyTool应用了所有这些工具来执行静态,静态和动态分析,并生成JSON和CSV格式的功能文件,还允许将所有数据保存在MongoDB数据库中。 要获取更多信息,您可以阅读以下两篇文章: 马丁·A,拉拉·卡布雷拉·R和卡马乔·D(2018)。 信息融合。 DOI:10.1016 / j.inffus.2018.12.006 马丁·A,拉拉·卡布雷拉·R和卡马乔·D(2018)。 数据科学和知识工程中的传感决策支持(第509-516页)。 世
2022-09-27 11:16:36 259.53MB android-analysis android-malware-detection Python
1
应用统计学入门教程,非常详细易懂,英文原版,第七版,带英文书签目录
2022-09-25 19:49:10 42.91MB 统计方法 数据分析
1
uboot方面的文档资料 包括源代码的一些分析。教你读懂如何分析uboot
2022-09-24 22:00:19 554KB uboot_文档 uboot_analyze
2021-域自适应-医学图像分析 综述译文
2022-09-22 09:08:26 38KB 域适应 医学图像 综述
1
使用PyTorch在MURA数据集上的DenseNet 在MURA数据集上实现169层模型的PyTorch实现,灵感来自Pranav Rajpurkar等人的论文 。 MURA是肌肉骨骼X射线照片的大型数据集,其中放射医师手动将每项研究标记为正常或异常。 重要事项: 所实现的模型是169层DenseNet,其单节点输出层使用ImageNet数据集上预先训练的模型中的权重进行初始化。 在将图像馈送到网络之前,将每个图像标准化为具有与ImageNet训练集中的图像相同的均值和标准差,并缩放为224 x 224,并通过随机的横向反转和旋转进行增强。 该模型使用了本文提到的改进的二进制交叉熵损失函数。 每次经过一段时间后,验证损失达到稳定水平,学习率就会下降10倍。 优化算法是默认参数β1= 0.9和β2= 0.999的Adam。 根据MURA数据集文件: 该模型将一个或多个用于上
1
ALGLIB is a cross-platform numerical analysis and data processing library. It supports several programming languages (C++, C#, Delphi) and several operating systems (Windows and POSIX, including Linux). ALGLIB features include: Data analysis (classification/regression, statistics) Optimization and nonlinear solvers Interpolation and linear/nonlinear least-squares fitting Linear algebra (direct algorithms, EVD/SVD), direct and iterative linear solvers Fast Fourier Transform and many other algorithms
2022-09-21 22:00:21 3.65MB alglib data_analysis fast_svd math_alglib_learn