通过建立Softmax Regression模型对简单的多分类问题进行求解,最终可以得出训练权重,并且绘制出训练数据可视化结果图
2021-03-28 13:35:29 6.32MB Softmax machine learning
1
IDL格式文件,可在IDL软件中打开进行长时间序列的数据的回归分析
2021-03-15 16:06:40 603B idl
1
通常将序数回归(OR)定义为输入样本按序数等级进行排序的任务。 OR已经发现了各种各样的应用程序,并且已经完成了很多工作。 但是,大多数现有工作都集中在有监督/半监督的OR分类上,并且尚未明确解决半监督或OR聚类的问题。 在现实世界的OR应用程序中,标记大量的训练样本通常是耗时且昂贵的,而可以使用一组未标记的样本来建立OR模型。 此外,尽管样本标签不可用,但有时我们可以获得未标记样本的相对排名信息。 此样本排名信息可用于完善OR模型。 因此,如何在未加标签的样本上建立OR模型并将样本排名信息纳入提高聚类精度的过程仍然是OR应用程序的主要挑战。 在本文中,我们考虑了具有样本排序约束的半监督OR聚类问题,该问题给出了未标记样本的相对排名信息,并提出了一种用于半监督OR聚类的最大余量方法。 一方面,M²SORC寻求一组平行的超平面,以将未标记的样本划分为多个簇。 另一方面,提出了损失函数以将样本排名信息纳入聚类过程。 结果,制定了M²SORC的优化函数,以最大程度地增加最接近的相邻簇的余量,同时最大程度地减少与样本排序约束相关的损失。 在OR数据集上进行的大量实验表明,所提出的M²SORC方
2021-03-13 12:07:07 2.16MB Ordinal regression (OR); semisupervised
1
The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.
2021-03-05 11:42:41 7.39MB 决策树 机器学习
1
线性回归餐厅情感分析 目录表 描述 线性回归机器学习模型可预测评论是肯定的还是否定的。 它以86%的准确度正确预测正确的标签。 技术领域 使用以下项目创建项目: python版本:3.9.1 NumPy库版本:1.20.0 熊猫库版本:1.2.2 数据集 制作数据集后,每个功能都是代表餐厅评论中所使用单词的存在或不存在的分类特征(0、1)。 常见词(例如“ the”,“ a”等)未分类。 每行代表一个点(餐厅评论),每列代表其特征(评论中是否使用单词)。 除了评论是肯定的(1)还是否定的(0),每列都是除包含标签的最后一列之外的单独功能。 设置 下载.py文件,training_dataset,validation_dataset和权重文件。 将它们放在单个文件或项目文件中。 运行代码 将以下内容添加到类文件中: x = logistic_regression("train_d
2021-02-26 12:05:53 4.99MB Python
1
码农 转 机器学习,logistic regression 推导过程,有启发,0基础可看懂,用颜色标注的很清楚 (免费公开版)
1
XRealStats-Mac.xlam
2021-02-25 16:03:09 3.55MB regression
1
This paper takes the p-adic representation of integers as the research object to realize the distance measurement of integers in the p-adic metric space. The authors firstly apply the Euclidean algorithm to infer the coefficients of a positive integer in polynomial representation, whose corresponding negative integer can be obtained with the help of the similar solution method of binary complement; secondly, the coefficients are respectively mapped into from mod p to mod the n-th power of p laye
2021-02-22 09:07:45 393KB distance measure; p-adic; metric
1
The report focuses on development of the expert system, which can provide for the producer the quantitative analyze of rice cultivation process managing methods. The rice growth base knowledge is presented in it in the form of mathematical regression models. While developing the system, the Web-technologies and JESS expert system are used. As the result, the knowledgebase and the prototype of rice cultivation management expert system were developed by the authors. The convergence of crop growth
2021-02-22 09:07:44 394KB rice cultivation; mathematical regression
1