ISODATA及K-means算法原理及其实现
2019-12-21 21:57:22 10.05MB ISODATA K-means
1
k-means聚类以及特征提取算法,实现道路标志检测。
2019-12-21 21:55:30 13KB 路标检测 k-means聚类
1
K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。 本代码提供了k-means算法的python实现,并使用matlibplot可视化算法结果
2019-12-21 21:54:32 556KB k-means
1
基于Kmeans聚类的图像分割算法,适合初学者学习。分较少
2019-12-21 21:52:39 223KB Kmeans
1
点击main.m即可运行出结果,算法纯手打,没有利用任何工具箱,极具参考价值
2019-12-21 21:52:04 28KB kmeans 聚类分析 图像区域分割
1
k-means算法。它不仅是最简单的聚类算法,也是最普及且最常用的。k-means算法是一种基于形心的划分数据的方法。我们给定一个数据集DD,以及要划分的簇数kk,就能通过该算法将数据集划分为kk个簇。一般来说,每个数据项只能属于其中一个簇。具体方法可以这样描述: 假设数据集在一个mm维的欧式空间中,我们初始时,可随机选择kk个数据项作为这kk个簇的形心Ci,i∈{1,2,…k}Ci,i∈{1,2,…k},每个簇心代表的其实是一个簇,也就是一组数据项构成的集合。然后对所有的nn个数据项,计算这些数据项与CiCi的距离(一般情况下,在欧式空间中,数据项之间的距离用欧式距离表示)。比如对于数据项Dj,j∈{1,…n}Dj,j∈{1,…n},它与其中的一个簇心CiCi最近,则将DjDj归类为簇CiCi. 通过上面这一步,我们就初步将DD划分为kk个类了。现在重新计算这kk个类的形心。方法是计算类中所有数据项的各个维度的均值。这样,构成一个新的形心,并且更新这个类的形心。每个类都这样计算一次,更新形心。 对上一步计算得到的新的形心,重复进行第(1),(2)步的工作,直到各个类的形心不再变化为止。
2019-12-21 21:49:32 1.17MB K-mean 聚类 算法
1
K-means,传统计算K均值的一种聚类算法,因其复杂度抵而应用最为普遍的一种聚类方法
2019-12-21 21:25:59 2KB k-means matlab
1
程序为python写的k-means算法,以及测试用的数据,将程序与数据放在同一个目录下,即可运行
2019-12-21 20:55:02 6KB k-means 聚类 python
1
运用K-means算法进行图像分割, K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。 k个初始类聚类中心点的选取对聚类结果具有较大的 公式 公式 影响,因为在该算法第一步中是随机的选取任意k个对象作为初始聚类的中心,初始地代表一个簇。该算法在每次迭代中对数据集中剩余的每个对象,根据其与各个簇中心的距离将每个对象重新赋给最近的簇。当考察完所有数据对象后,一次迭代运算完成,新的聚类中心被计算出来。如果在一次迭代前后,J的值没有发生变化,说明算法已经收敛。 算法过程如下: 1)从N个文档随机选取K个文档作为质心 2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类 3)重新计算已经得到的各个类的质心 4)迭代2~3步直至新的质心与原质心相等或小于指定阈值,算法结束 具体如下: 输入:k, data[n]; (1) 选择k个初始中心点,例如c[0]=data[0],…c[k-1]=data[k-1]; (2) 对于data[0]….data[n],分别与c[0]…c[k-1]比较,假定与c[i]差值最少,就标记为i; (3) 对于所有标记为i点,重新计算c[i]={ 所有标记为i的data[j]之和}/标记为i的个数; (4) 重复(2)(3),直到所有c[i]值的变化小于给定阈值。 折叠工作原理 K-MEANS算法的工作原理及流程 K-MEANS算法 输入:聚类个数k,以及包含 n个数据对象的数据库。 输出:满足方差最小标准的k个聚类。
2019-12-21 20:43:27 307B K-means 图像分割 聚类
1
文件中包含K-Means聚类算法C#版本,一个文件中包含7个函数,使用的时候直接将C#文件复制到项目中即可使用,调用的时候主函数会直接返回结果
2019-12-21 20:36:30 2KB 算法
1