Mask_RCNN模型在COCO数据集上预训练权重mask_rcnn_coco.h5
2022-01-28 12:19:19 228.26MB Mask_RCNN
1
使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。这时候我们需要掌握如何操作这些模型数据。看完本文,相信你一定会有收获! 1 Tensorflow模型文件 我们在checkpoint_dir目录下保存的文件结构如下: |--checkpoint_dir | |--checkpoint | |--MyModel.meta | |--MyModel.data-00000-of-00001 | |--MyModel.index 1.1 meta文件 MyModel.meta文件保存的是图结构,meta文件是pb(pr
2022-01-27 18:12:46 69KB checkpoint fl flow
1
tensorflow 物体识别object detection 官方预训练模型
2022-01-26 16:00:39 86.32MB tensorflow 目标检测 人工智能 python
1
Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.
2022-01-25 17:24:07 87.07MB resnet 预训练模型 权重文件 深度学习
1
Store the head detection model in checkpoints/ folder.
2022-01-21 19:16:16 65.16MB 预训练
1
今天小编就为大家分享一篇pytorch 更改预训练模型网络结构的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2022-01-21 09:17:02 32KB pytorch 预训练 模型 网络结构
1
|简体中文 ERNIE是百度开创性提出的基于知识增强的持续学习语义理解框架,该框架将大数据预训练与多源丰富知识相结合,通过持续学习技术,不断吸收海量文本数据中文字句,结构,语义等方面ERNIE在情感分析,文本匹配,自然语言推理,词法分析,阅读理解,智能问答等16个公开数据集上全面显着超越世界领先技术,在国际权威的通用语言理解上评估基准GLUE上,突破首次突破90分,获得全球第一。在今年3月落下帷幕的全球最大语义评价。SemEval2020上,ERNIE摘得5项世界冠军,该技术也被全球顶级科技商业杂志《麻省理工科技评论》官方网站报道,相关创新成果也被国际顶级学术会议AAAI,IJCAI收录。E
1
预训练语言模型看句子嵌入 这是以下的TensorFlow实现: On the Sentence Embeddings from Pre-trained Language Models Bohan Li, Hao Zhou, Junxian He, Mingxuan Wang, Yiming Yang, Lei Li EMNLP 2020 模型 斯皮尔曼的罗 BERT-大型-NLI 77.80 BERT-大-NLI-last2avg 78.45 BERT大NLI流(仅目标,仅训练) 80.54 BERT大型NLI流程(目标,训练+开发+测试) 81.18 如有任何疑问,请联系 。 要求 Python> = 3.6 TensorFlow> = 1.14 准备 预训练的BERT模型 export BERT_PREMODELS= " ../bert_premodels " mk
2022-01-18 15:20:04 275KB Python
1
主要介绍了Tensorflow加载Vgg预训练模型操作,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2022-01-17 09:05:17 148KB Tensorflow 加载Vgg 训练模型
1
自用收集的基于ResNet50的Faster RCNN目标检测网络框架,附带可迁移学习的预训练权重用于自学备用,感谢Bubbliiing
2022-01-11 14:58:19 94.99MB pytorch
1