迁移学习从根本上改变了自然语言处理(NLP)的处理范式。许多最先进的模型首先在大型文本语料库上进行预先训练,然后在下游任务上进行微调。
2022-02-12 14:24:26 4.63MB 弱监督 预训练语言模型
1
Google提出的开源人脸识别算法FaceNet的预训练模型,FaceNet的官方的预训练模型,20170511-185253 NOTE: If you use any of the models, please do not forget to give proper credit to those providing the training dataset as well.
1
包含4个权重文件,yolov5l ,yolov5m , yolov5s, yolov5x 。 从谷歌云盘下载的,4个文件4个积分不多吧.
2022-02-08 17:13:46 311.13MB yolov5 模型权重 目标检测 预训练文件
1
官方基于coco数据集预训练模型,微调后可以达到准确率较高的物体识别效果
2022-02-04 22:00:48 376.18MB tensorflow 目标检测 深度学习 人工智能
1
资源来自 https://github.com/Embedding/Chinese-Word-Vectors
2022-01-31 16:08:27 531.43MB 自然语言处理 人工智能 nlp
1
资源来源 https://github.com/Embedding/Chinese-Word-Vectors
2022-01-31 16:08:26 707.81MB 自然语言处理 人工智能 nlp 中文词向量
1
Mask_RCNN模型在COCO数据集上预训练权重mask_rcnn_coco.h5
2022-01-28 12:19:19 228.26MB Mask_RCNN
1
使用tensorflow过程中,训练结束后我们需要用到模型文件。有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练。这时候我们需要掌握如何操作这些模型数据。看完本文,相信你一定会有收获! 1 Tensorflow模型文件 我们在checkpoint_dir目录下保存的文件结构如下: |--checkpoint_dir | |--checkpoint | |--MyModel.meta | |--MyModel.data-00000-of-00001 | |--MyModel.index 1.1 meta文件 MyModel.meta文件保存的是图结构,meta文件是pb(pr
2022-01-27 18:12:46 69KB checkpoint fl flow
1
tensorflow 物体识别object detection 官方预训练模型
2022-01-26 16:00:39 86.32MB tensorflow 目标检测 人工智能 python
1
Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers---8x deeper than VGG nets but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.
2022-01-25 17:24:07 87.07MB resnet 预训练模型 权重文件 深度学习
1