PCP套件 用于主成分追踪和矩阵完成的MATLAB库。 PCP功能: pcp_fro(高斯噪声) pcp_l1(稀疏噪声) pcp_l1l2(列高斯噪声) 矩阵完成函数: mc_svt(奇异值阈值) mc_lin(线性化ADM) mc_ialm(不精确的ALM) mc_relax_lin(宽松的线性化梯度下降) mc_relax_lin_ext(宽松的线性化扩展GD) mc_relax_lin_acc(宽松的线性化加速GD) 选择性PCP: sel_pcp(线性化ADM) 有关更多详细信息,请参见文档,演示和功能本身。 由斯蒂芬·蒂尔尼( )创建
2021-11-08 16:29:30 223KB MATLAB
1
基于Spark的主成分分析和因子分析并行化的研究与实现.zip
2021-11-08 14:51:30 4.66MB java
1
表3 特征值及主成分贡献率
2021-11-06 17:53:09 669KB 用得着
1
燃气负荷受到天气状况和经济发展等多种因素的影响, 造成燃气变化趋势具有较大的复杂性和特征因子较大的冗余性, 造成预测精度的下降. 为了解决这个问题, 在处理燃气负荷的复杂性中使用EEMD自适应的时频局部化分析方法, 将非线性非平稳的燃气负荷数据分解为平稳的本征模式分量及剩余项. 在解决特征因子之间的冗余性中, 在PCA中加入互信息分析, 使用互信息代替协方差矩阵的特征值选择特征向量, 可以有效避免PCA仅仅考虑特征之间的相关性, 忽略了与燃气负荷值关系的缺点. 最后针对不同的子序列建立对应的LSTM模型, 重构各个分量的预测值产生最后的结果. 使用上海的燃气数据进行验证, 实验结果证明本文提出的方法测试集MAPE达到6.36%, 低于其他模型的误差.
1
因子分析和主成分分析的原理和步骤,并通过spss分析实现,并配有例题解释。
2021-11-03 14:40:15 915KB 主成分 因子
1
主成分分析(PCA)、核主成分分析(KPCA)和概率主成分分析(PPCA)是已经取得广泛应用的特征提取方法。提出一种基于概率核主成分分析(PKPCA)的检测液晶屏幕亮点的方法。作为对PPCA的一种非线性扩展,PKPCA在PPCA的基础上引入了核函数方法,因而其捕获模式非线性特征的能力更强。在KPCA和PPCA的基础上推导了PKPCA过程公式,并在检测液晶屏幕亮点的应用中将PKPCA、PPCA、PCA算法进行比较。实验结果表明,PKPCA的检测率和局部信噪比优于其他两者。
2021-11-02 19:50:45 908KB 论文研究
1
针对矿山边坡预测模型精度低等问题,提出一种由主成分分析(PCA)、灰狼算法(GWO)和支持向量机(SVM)组合的混合模型(PCA-GWO-SVM)。首先,采用PCA对原始数据进行降维去噪;其次,通过GWO算法优化支持向量机参数;最后,通过SVM实现矿山边坡变形的预测。矿山边坡实例表明PCA-GWO-SVM模型具有更高的预测精度。
1
1 基本概念 PCA即主成分分析技术。主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。 在统计学中,主成分分析PCA是一种简化数据集的技术。它是一个线性变换。这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。 主成分分析经常用于减少数据集的维数,同时保持数据集的对方差贡献最大的特征。这是通过保留低阶主成分,忽略高阶主成分做到的。这样低阶成分往往能够保留住数据的最重要方面。但是,这也不是一定的,要视具体应用而定。 2 原理与数学推导 1.主成分分析使用的是梯度上升法
2021-10-29 15:51:35 749KB pca test 主成分分析
1
主成分分析的matlab代码实现,对输入输出及主要代码有详细的标注。
2021-10-29 11:39:32 930B 主成分分析 PCA matlab 代码
1