人工智能-深度学习-tensorflow
2024-07-05 11:20:07 2KB 人工智能 深度学习 tensorflow
1
机器学习 Myers Briggs 人格预测 ​ Myers-Briggs Type Indicator(MBTI)是一种用于评估个人人格类型的心理测量工具。它基于卡尔·荣格(Carl Jung)的心理类型理论,将个体的行为和偏好分为四个二元维度,每个维度有两种可能的特质,从而产生 16 种不同的人格类型。 以下是 MBTI 中的四个维度及其对应的特质: **外向(E)- 内向(I):**外向倾向的人更喜欢与外部世界互动,善于社交,倾向于行动和表达。而内向倾向的人更喜欢独处,更关注内心世界,倾向于思考和反省。 **感觉(S)- 直觉(N):**感觉型的人更注重现实、具体的事实和细节,喜欢实际经验和具体情况。直觉型的人更注重未来、想象力和可能性,喜欢探索新思想和理念。 **思考(T)- 情感(F):**思考型的人更偏向于逻辑、客观分析和理性决策,倾向于基于事实和原则做出决定。情感型的人更注重情感、价值观和人际关系,倾向于考虑他人感受和价值观。 **判断(J)- 感知(P):**判断型的人更喜欢有计划、有组织、按规则进行生活,倾向于做出决策并快速采取行动。感知型的人更喜欢灵活、开放、适应
2024-07-04 17:14:19 279.93MB 机器学习
1
深度学习溺水姿势检测素材是当前人工智能领域的一个重要应用,主要目标是通过计算机视觉技术来识别和预测水下的溺水情况。本数据集包含了532张从网络爬虫获取的水下拍摄的泳姿图片,这些图片可以作为训练深度学习模型的基础素材,帮助我们构建溺水检测系统。 深度学习是一种模仿人脑神经网络结构的机器学习方法,它能够通过大量的训练数据自我学习并改进模型,从而在图像识别、语音识别、自然语言处理等领域展现出强大的性能。在溺水检测中,深度学习模型可以通过对大量泳姿图片的学习,掌握不同泳姿和溺水状态的特征,提高识别的准确性和及时性。 Python是实现深度学习的主要编程语言,它拥有丰富的库和框架,如TensorFlow、Keras、PyTorch等,这些工具极大地简化了模型构建和训练的过程。对于这个溺水姿势检测任务,我们可以利用Python编写数据预处理脚本,将图像数据进行归一化、增强等处理,然后构建深度学习模型进行训练。 溺水检测系统通常基于卷积神经网络(CNN)架构,这种网络擅长处理图像数据。CNN包含卷积层、池化层、全连接层等组件,能够自动提取图像中的关键特征。在训练过程中,模型会逐步学习到溺水和非溺水状态的关键区别,例如人体姿态、水中的动作、面部表情等。在训练完成后,模型可以实时分析摄像头捕获的水下画面,快速判断是否存在溺水风险。 数据集中的每张图片都可能代表一个独特的游泳姿势或溺水状态,比如eb076ba52d156f8fb512fb6ca2fbc64142781e53.jpg、istockphoto-459392451-612x612.jpg等,这些图片在训练过程中会被拆分成输入图像和对应的标签(溺水或非溺水)。通过反向传播和梯度下降等优化算法,模型可以调整其参数以最小化预测错误,从而提高识别精度。 在实际应用中,这样的溺水检测系统可以部署在游泳池、海滩等水域的安全监控设备上,实时监测水面状况,一旦检测到异常情况,可以立即发出警报,减少溺水事故的发生。此外,该系统还可以结合物联网技术,与其他智能设备联动,实现远程预警和应急响应。 这个溺水姿势检测素材集合为开发高效、准确的深度学习溺水检测系统提供了宝贵的数据资源。通过深入研究和优化模型,我们可以构建出能够保障水上安全、挽救生命的人工智能解决方案。
2024-07-04 13:52:47 26.22MB 深度学习 python
1
微信小程序Web开发平台导入WeiXinMiniProgram项目 Intellij idea 运行Servlet项目,将src中的fastjson-1.1.34.jar和mysql-connector-java-8.0.15.jar导入lib并复制至Tomcat的lib文件夹中 MySQL 导入 SQL文件夹中的两个sql文件 运行MySQL,Servlet服务器,编译微信小程序项目
2024-07-04 13:05:46 5.8MB mysql 微信小程序
基于R语言开发时间序列预测 Time Series Analysis With Applications in R 学习笔记 基于R语言开发时间序列预测 Time Series Analysis With Applications in R 学习笔记 基于R语言开发时间序列预测 Time Series Analysis With Applications in R 学习笔记 基于R语言开发时间序列预测 Time Series Analysis With Applications in R 学习笔记 基于R语言开发时间序列预测 Time Series Analysis With Applications in R 学习笔记 基于R语言开发时间序列预测 Time Series Analysis With Applications in R 学习笔记 基于R语言开发时间序列预测 Time Series Analysis With Applications in R 学习笔记 基于R语言开发时间序列预测 Time Series Analysis With Applications in R 学
2024-07-04 12:40:54 5.98MB r语言 时间序列
1
包含文件 1. AutoMod仿真软件安装包 2. AutoMod学习资料 - AutoMod软件基础 - AutoMod队列 - AutoMod传送带 - AutoMod移动路径等等 注:中文版资料、安装包请不要选择验证/重启等操作、学习版仅能查看Model文件部分项目缺失
2024-07-04 11:43:31 159.54MB AutoMod
1
【标题】: "Python在数学建模中的应用" 在数学建模中,Python语言因其强大的数据处理、科学计算以及可视化能力而备受青睐。本学习笔记主要涵盖了如何利用Python进行有效的数学建模,其中包括了老哥网课中的实例代码,旨在帮助你深入理解和实践数学建模的各个环节。 【描述】: "数学建模是将实际问题抽象为数学模型,并通过模型求解以解决现实问题的一种方法。这份资料集合了数学建模比赛中的题目,以及解决这些问题的一些思路和参考源码。这些源码不仅是对问题解决方案的呈现,也是学习和提升Python编程技巧的宝贵资源。" 在数学建模比赛中,你需要面对各种各样的问题,例如社会、经济、环境等领域的复杂现象。资料中的"思路"部分可能包括了对问题的分析、假设的建立、模型的选择、求解策略等步骤的详细阐述。而"源码参考"则是将这些理论知识转化为实际操作的关键,它涵盖了数据预处理、算法实现、结果验证等阶段,展示了Python在数学建模中的实际应用。 【标签】: "数学建模" 数学建模涉及到多个学科的知识,如微积分、概率统计、线性代数等。Python库如NumPy用于数值计算,Pandas用于数据管理,Matplotlib和Seaborn用于数据可视化,Scipy和SciKit-Learn提供了各种优化和机器学习算法,它们在数学建模中都发挥着重要作用。 在学习过程中,你将逐渐掌握如何利用Python来构建和求解数学模型,如线性规划、非线性优化、时间序列分析、预测模型等。同时,你还会学习到如何评估模型的合理性,以及如何根据实际情况调整模型参数,以提高模型的预测精度和实用性。 通过这份资料,你不仅可以提升数学建模的理论水平,还能增强实际操作技能,为参与数学建模竞赛或解决实际问题打下坚实基础。无论你是初学者还是有一定经验的建模者,都能从中受益。 【压缩包子文件的文件名称列表】: "new22" 这个文件名可能表示这是一个未命名或正在更新的文件夹,通常在学习资料的整理过程中,会随着内容的不断补充和完善而更新。在这个文件夹中,你可能会找到不同阶段的学习笔记、代码示例、模型解析等各类文档,它们将构成一个完整的数学建模学习路径,帮助你在实践中不断进步。 总结来说,这份"Python在数学建模中的应用"学习资料是一份宝贵的资源,它结合了理论与实践,将带你走进数学建模的世界,体验从问题提出到解决方案的全过程,提升你的数学思维和编程能力。无论是为了比赛准备还是学术研究,都是不可多得的学习材料。
2024-07-04 11:26:58 49.54MB 数学建模
1
IBM MQ,全称为WebSphere Message Queuing,是IBM公司提供的一种高级消息中间件,用于在分布式系统中可靠地传输消息。这个压缩包包含了IBM MQ学习的多个重要方面,包括理论知识、实践工具和日常运维指南。 "MQ配置.doc"文档很可能是关于IBM MQ的配置教程,它会涵盖如何在不同操作系统上安装和配置MQ服务器,以及如何设置队列管理器、队列和通道等核心组件。队列管理器是MQ的核心,负责管理消息的存储和传递;队列是消息的实际存储位置,而通道则定义了两个MQ实体之间的通信路径。 "MQ日常维护手册.doc"是运维人员的重要参考,它可能包含监控、日志分析、性能调优、故障排查和备份恢复等日常操作步骤。例如,如何查看和解析MQ的日志文件来定位问题,如何定期检查关键性能指标以确保系统健康,以及在出现故障时如何快速恢复服务。 "Websphere+MQ入门教程.pdf"可能是一个综合性的学习资料,它会深入介绍IBM的集成平台WebSphere与MQ的结合使用。WebSphere是IBM的应用服务器,常与MQ配合,提供企业级的应用集成和消息传递解决方案。这份教程可能涉及如何在WebSphere环境中部署和管理MQ,以及如何通过JMS(Java Message Service)接口进行应用编程。 至于"MQ工具",这可能是指IBM提供的各种MQ管理工具,如MQ Explorer或命令行工具。MQ Explorer允许用户图形化地管理和监控MQ环境,而命令行工具如runmqsc则提供更底层的配置和管理功能。此外,这个目录可能还包含一些自定义的工具,如你基于MQ API开发的客户端和服务端小工具。这些工具可能是用Java实现的,它们简化了MQ的接入,帮助开发者快速创建发送和接收消息的应用。 这个资源包为学习和使用IBM MQ提供了一个全面的起点,从基础配置到实际开发,再到日常运维,覆盖了IBM MQ的各个重要环节。对于想要掌握MQ技术的人来说,这是一个宝贵的资料库。
2024-07-04 10:08:18 2.37MB MQ学习资料
1
在本资源中,我们主要探讨的是利用机器学习中的回归算法来预测葡萄酒的质量。回归是一种预测性的建模技术,用于研究两个或多个变量间的关系,尤其是因变量与一个或多个自变量之间的关系。在这个实战案例中,我们将关注Lasso、Ridge和ElasticNet三种回归算法,它们都是线性模型的变种,特别适用于处理具有大量特征或者存在多重共线性的数据集。 让我们了解下Lasso回归(Least Absolute Shrinkage and Selection Operator)。Lasso回归在最小化平方误差的同时,引入了L1正则化项,这使得部分系数变为零,从而实现特征选择的效果。通过这种方式,Lasso不仅可以减少过拟合的风险,还能帮助我们理解哪些特征对目标变量的影响更为显著。 接着是Ridge回归(岭回归),它采用了L2正则化,即在损失函数中添加了特征权重的平方和。与Lasso不同,Ridge不会使系数完全变为零,而是将所有系数都缩小到一个较小的值,这样可以保持所有特征的贡献,同时降低模型复杂度,防止过拟合。 ElasticNet是Lasso和Ridge的结合体,它综合了两者的优点。ElasticNet引入了L1和L2正则化的线性组合,既保留了特征选择的能力,又保持了模型的稳定性。在特征之间有强相关性的情况下,ElasticNet往往比单独使用Lasso或Ridge表现更好。 在这个实战项目中,我们将使用葡萄酒质量数据集(winequality-red.csv),这是一个常见的多变量数据集,包含了红葡萄酒的各种化学属性,如酒精含量、酸度等,以及对应的葡萄酒质量评分。通过这个数据集,我们可以训练和比较上述三种回归模型的预测性能,通常我们会使用交叉验证来评估模型的稳定性和泛化能力。 10_葡萄酒质量预测.py 文件应该包含了整个分析过程的Python代码。代码可能涵盖了数据预处理(例如缺失值处理、特征缩放)、模型训练(使用sklearn库中的Lasso、Ridge和ElasticNet类)、模型评估(如均方误差、R^2分数等指标)以及可能的模型调优步骤。 这个实战案例旨在帮助我们理解和应用不同的回归算法,特别是在处理具有大量特征的数据集时,如何通过正则化技术来提升模型的预测能力和解释性。通过对Lasso、Ridge和ElasticNet的比较,我们可以更深入地理解它们在实际问题中的适用场景,为未来的工作提供有价值的参考。
2024-07-03 16:06:06 24KB 机器学习
1
内容概要:道路积水检测数据集,共包含460张图片和对应的标注文件,标注格式为VOC,可方便转换为yolo以及coco等常用数据集。 用处:可用于目标检测相关的训练,实测数据标注质量高,可用于yolov5,yolov8等各个yolo系列检测训练,能够准确识别出道路上的积水情况。
2024-07-03 11:53:53 50.06MB 目标检测 yolo 数据集 深度学习
1