1. 通过模拟实现几种基本页面置换的算法,进一步熟悉虚拟存储器的概念及实现虚拟存储器的方法; 2. 掌握虚拟存储请求页式存储管理中几种基本页面置换算法的基本思想; 3. 对各种算法的性能进行分析比较。
2019-12-21 20:37:28 177KB 页面置换
1
这是这几天刚刚和我的小组完成的操作系统页面置换算法,完全是手巧,没有复制网上资源,是一个完整的文档,已经通过了老师的验收,付出了心血,加了很多注释。希望您能够帮助到大家,谢谢。
2019-12-21 20:34:42 370KB 页面置换算法
1
一、课程设计目的 通过请求页式管理方式中页面置换算法的模拟设计,了解虚拟存储技术的特点,掌握请 求页式存储管理中的页面置换算法。 容 二、课程设计内容 模拟实现 OPT(最佳置换)、FIFO 和 LRU 算法,并计算缺页率。 示 三、要求及提示 本题目必须单人完成。 1、首先用随机数生成函数产生一个“指令将要访问的地址序列”,然后将地址序列变换 成相应的页地址流(即页访问序列),再计算不同算法下的命中率。 2、通过随机数产生一个地址序列,共产生 400 条。其中 50%的地址访问是顺序执行的, 另外 50%就是非顺序执行。且地址在前半部地址空间和后半部地址空间均匀分布。具体产 生方法如下: 1) 在前半部地址空间,即[0,199]中随机选一数 m,记录到地址流数组中(这是 非顺序执行); 2) 接着“顺序执行一条指令”,即执行地址为 m+1 的指令,把 m+1 记录下来; 3) 在后半部地址空间,[200,399]中随机选一数 m’,作为新指令地址; 4) 顺序执行一条指令,其地址为 m’+1; 5) 重复步骤 1~4,直到产生 400 个指令地址。 3、将指令地址流变换成页地址(页号)流,简化假设为: 1) 页面大小为 1K(这里 K 只是表示一个单位,不必是 1024B); 2) 用户虚存容量为 40K; 3) 用户内存容量为 4 个页框到 40 个页框; 6 4) 用户虚存中,每 K 存放 10 条指令,所以那 400 条指令访问地址所对应的页地 址(页号)流为:指令访问地址为[0,9]的地址为第 0 页;指令访问地址为[10, 19]的地址为第 1 页;……。按这种方式,把 400 条指令组织进“40 页”,并 将“要访问的页号序列”记录到页地址流数组中。 4、循环运行,使用户内存容量从 4 页框到 40 页框。计算每个内存容量下不同页面置换 算法的命中率。输出结果可以为: 页框数 OPT 缺页率 FIFO 缺页率 LRU 缺页率 [4] OPT:0.5566 FIFO:0.4455 LRU:0.5500 [5] OPT:0.6644 FIFO:0.5544 LRU:0.5588 …… …… …… …… [39] OPT:0.9000 FIFO:0.9000 LRU:0.9000 [40] OPT:1.0000 FIFO:1.0000 LRU:1.0000 注 1:在某一次实验中,可能 FIFO 比 LRU 性能更好,但足够多次的实验表明 LRU 的平均性能比 FIFO 更好。 注 2:计算缺页率时,以页框填满之前和之后的总缺页次数计算。
2019-12-21 20:30:48 23KB 页面置换算法
1
一、实验题目:页面置换算法(请求分页) 二、实验目的: 进一步理解父子进程之间的关系。 1) 理解内存页面调度的机理。 2) 掌握页面置换算法的实现方法。 3) 通过实验比较不同调度算法的优劣。 4) 培养综合运用所学知识的能力。 页面置换算法是虚拟存储管理实现的关键,通过本次试验理解内存页面调度的机制,在模拟实现FIFO、LRU等经典页面置换算法的基础上,比较各种置换算法的效率及优缺点,从而了解虚拟存储实现的过程。将不同的置换算法放在不同的子进程中加以模拟,培养综合运用所学知识的能力。 三、实验内容及要求 这是一个综合型实验,要求在掌握父子进程并发执行机制和内存页面置换算法的基础上,能综合运用这两方面的知识,自行编制程序。 程序涉及一个父进程和两个子进程。父进程使用rand()函数随机产生若干随机数,经过处理后,存于一数组Acess_Series[]中,作为内存页面访问的序列。两个子进程根据这个访问序列,分别采用FIFO和LRU两种不同的页面置换算法对内存页面进行调度。要求: 1) 每个子进程应能反映出页面置换的过程,并统计页面置换算法的命中或缺页情况。 设缺页的次数为diseffect。总的页面访问次数为total_instruction。 缺页率 = disaffect/total_instruction 命中率 = 1- disaffect/total_instruction 2)将为进程分配的内存页面数mframe 作为程序的参数,通过多次运行程序,说明FIFO算法存在的Belady现象。
2019-12-21 20:28:08 3.68MB 操作系统 上机 实验报告 页面置换
1
操作系统页面置换算法中的FIFO算法,这个是用java代码实现的,纯代码,经验证是完全正确的。
2019-12-21 20:26:29 4KB 页面置换算法
1
本实验使用一下算法 使用rand()函数随机产生页面号,用数组装入页面号,模拟页面调入内存中发生页面置换的过程。 整个过程,都是使用数组来实现每个算法,模拟队列,模拟堆栈的功能,实现每一个置换算法。 页面置换算法 最佳置换算法(OPT):选择永不使用或是在最长时间内不再被访问(即距现在最长时间才会被访问)的页面淘汰出内存。用于算法评价参照。 随机置换算法 (S):产生一个取值范围在0和N-1之间的随机数,该随机数即可表示应被淘汰出内存的页面。 先进先出置换算法(FIFO):选择最先进入内存即在内存驻留时间最久的页面换出到外存。 最近最久未使用置换算法(LRU): 以“最近的过去”作为“最近的将来”的近似,选择最近一段时间最长时间未被访问的页面淘汰出内存 Clock置换算法:为进入内存的页面设置一个访问位,当内存中某页被访问,访问位置一,算法在选择一页淘汰时,只需检查访问位,若为0,则直接换出,若为1,置该访问位为0,检测内存中的下一个页面的访问位。 改进型Clock置换算法: ①从查寻指针当前位置起扫描内存分页循环队列,选择A=0且M=0的第一个页面淘汰;若未找到,转② ② 开始第二轮扫描,选择A=0且M=1的第一个页面淘汰,同时将经过的所有页面访问位置0;若不能找到,转①
2019-12-21 20:22:16 11KB 操作系统 页面置换算法 OPT LRU
1
本页面置换算法包括OPT、FIFO、LRU、clock等算法。
2019-12-21 20:13:34 6KB 页面置换
1
设计一个虚拟存储区和内存工作区,编程序演示下述算法的具体实现过程,并计算访问命中率: 要求设计主界面以灵活选择某算法,且以下算法都要实现 1)先进先出算法(FIFO) 2)最近最久未使用算法(LRU) 3)最佳置换算法(OPT)
2019-12-21 20:00:54 37KB 页面置换 C语言 操作系统实验
1
这是 我在今年的操作系统的课程设计的题目。代码的经过了老师的BT检测,绝对可用。编写简单,易懂。欢迎下载,交流!
2019-12-21 19:59:19 184KB FIFO 页面置换 操作系统课设 先进先出
1
Java,操作系统课程设计,模拟页面置换,支持opt,lru,lfu,fifo,
2019-12-21 19:53:03 4.47MB 页面置换
1