南瓜书旨在对西瓜书里比较难理解的公式加以解析
2023-12-27 19:20:58 1.62MB 机器学习
1
每当提到机器学习,大家总是被其中的各种各样的算法和方法搞晕,觉得无从下手。确实,机器学习的各种套路确实不少,但是如果掌握了正确的路径和方法,其实还是有迹可循的,这里我推荐SAS的LiHui的这篇博客,讲述了如何选择机器学习的各种方法。另外,Scikit-learn也提供了一幅清晰的路线图给大家选择:其实机器学习的基本算法都很简单,下面我们就利用二维数据和交互图形来看看机器学习中的一些基本算法以及它们的原理。(另外向BretVictor致敬,他的Inventingonprinciple深深的影响了我)所有的代码即演示可以在我的Codepen的这个Collection中找到。首先,机器学习最大的分
2023-12-27 19:18:42 700KB 图解机器学习
1
压缩包中包含了机器学习基础的知识,有线性模型、梯度下降、逻辑回归、神经网络、模型选择、决策树等知识。每一部分内容都有概念讲解和公式的推导。
2023-12-27 19:16:51 117.74MB 机器学习 神经网络 课程资源
1
是用于高光谱遥感影像分类的机器学习脚本,其中使用了MLP算法(Multilayer Perceptron Algorithm)对Salinas数据集进行分类。 Salinas数据集是一个常用的高光谱遥感影像数据集,包含了来自13种不同作物和地物的224个像素。在你的Python脚本中,使用了MLP算法对这些像素进行分类。MLP算法是一种基于神经网络的分类算法,其通过多层神经元对特征进行抽象和表达,从而实现高效的分类。在该算法中,使用了反向传播算法对网络进行训练,以便调整网络中的权重和偏置,从而提高分类的准确性。
1
## 关于数据集 - 数据集名称:SQuAD - 发布机构:斯坦福大学 Stanford University - 网址:https://rajpurkar.github.io/SQuAD-explorer/ - 大小:0.0341 GB - 简介:斯坦福问答数据集(The Stanford Question Answering Dataset,简称SQuAD)是一个阅读理解数据集,由群众工作者在维基百科文章中提出的问题组成,其中每个问题的答案是来自相应阅读段落的一段文本或跨度,共有500多篇文章中有10万多个问答配对。 斯坦福问答数据集(2.0版本)于2018年由斯坦福大学发布,相关论文为Know What You Don't Know: Unanswerable Questions for SQuAD。
2023-12-22 16:48:28 7.43MB 阅读理解数据集 机器学习
1
防灾科技学院机器学习题库
2023-12-22 01:20:16 2.6MB 机器学习
1
1.标量方向传播 1.1 代码 import torch #定义输入张量x x=torch.Tensor([3]) print(x) #初始化权重参数W,偏移量b、并设置require_grad属性为True,为自动求导 w=torch.randn(1,requires_grad=True) b=torch.randn(1,requires_grad=True) print("w=",w) print("b=",b) #实现前向传播 y=torch.mul(w,x) #等价于w*x print(y) z=torch.add(y,b) print(z)#等价于y+b #查看x,w,b页子节
2023-12-21 14:35:11 548KB
1
本项目基于C4.5决策树算法实现对莺尾花的分类识别。考虑到,花萼长度、花萼宽度、花瓣长度、花瓣宽度均为连续变量,所以需要进行离散化处理;这里通过Gini Index来进行离散化处理,考虑到此次分三类,且通过上面的可视化,三种花在4个属性上分布均存在较大差异,所以对花萼长度、花萼宽度、花瓣长度、花瓣宽度四个属性均采用两个分界点来分成三类。 max_depth = 2 训练集上的准确率:0.964 测试集上的准确率:0.895 max_depth = 3 训练集上的准确率:0.982 测试集上的准确率:0.974 max_depth = 4 训练集上的准确率:1.000 测试集上的准确率:0.974
2023-12-18 09:50:50 256KB 机器学习
1
房地产是促进我国经济持续增长的基础性、主导性产业,二手房市场是我国房地产市场不可或缺的组成部分。由于二手房的特殊性,目前市场上实时监测二手房市场房价涨幅的情况较少,影响二手房价的因素错综复杂,价格并非呈传统的线性变化。         本项目利用Python实现某一城市二手房相关信息的爬取,并对爬取的原始数据进行数据清洗,存储到数据库中,通过 flask 搭建后台,分析影响二手房房价的各类因素,并构建递归决策树模型,实现房价预测建模。
2023-12-16 22:08:54 58B 数据挖掘 机器学习 网络爬虫
1
机器学习算法第二版 这是Packt发布的《 的代码库。 流行于数据科学和机器学习的算法 这本书是关于什么的? 机器学习以其强大而快速的大型数据集预测而获得了极大的普及。 但是,强大功能背后的真正力量是涉及大量统计分析的复杂算法,该算法搅动大型数据集并产生实质性见解。 本书涵盖以下激动人心的功能: 研究特征选择和特征工程过程 评估性能和误差权衡以进行线性回归 建立数据模型并使用不同类型的算法了解其工作方式 学习调整支持向量机(SVM)的参数 探索自然语言处理(NLP)和推荐系统的概念 如果您觉得这本书适合您,请立即获取! 说明和导航 所有代码都组织在文件夹中。 例如,Chapter02。 该代码将如下所示: from sklearn.svm import SVC from sklearn.model_selection import cross_val_score svc =
2023-12-15 16:31:18 97KB Python
1