MATLAB实现TCN时间卷积神经网络多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入12个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2021b及以上。
卷积神经网络(CNN)入门总结-基于tensorflow2 包含CNN原理、已经在tf2中如何实现 CSDN文章地址:https://blog.csdn.net/zzpl139/article/details/127552177 在线运行地址:https://www.heywhale.com/mw/project/63410e26dfae0249677f85b0 数据地址:https://github.com/garythung/trashnet 数据地址2:https://www.heywhale.com/mw/dataset/5d1578e4708b90002c6a3238
2022-12-08 19:30:32 126KB CNN 深度学习 卷积神经网络 tensorflow2
1
针对传统两级手写汉字识别系统中手写汉字识别的特征提取方法的限制问题,提出了一种采用卷积神经网对相似汉字自动学习有效特征进行识别的系统方法。该方法采用来自手写云平台上的大数据来训练模型,基于频度统计生成相似子集,进一步提高识别率。实验表明,相对于传统的基于梯度特征的支持向量机和最近邻分类器方法,该方法的识别率有一定的提高。
2022-12-07 20:48:00 838KB 论文研究
1
深度学习算法改进(GAM注意力_STN模块_SE模块_ODConv动态卷积_FAN注意力模块实现源码+各改进说明) 1、引入了3D-permutation 与多层感知器的通道注意力和卷积空间注意力子模块 2、入了一个新的可学习模块--空间变换器,它明确地允许在网络中对数据进行空间操作。 3、重新校准通道特征反应来适应性地调整 通过明确地模拟通道之间的相互依存关系,自适应地重新校准通道的特征响应。 4、全维动态卷积(ODConv),一种更通用但更优雅的动态卷积设计 5、完全注意网络(FAN) ,它们通过结合注意通道处理设计来加强这种能力 该源码适合有一定深度学习算法基础的工程师下载学习借鉴!
2022-12-07 12:27:45 21.87MB GAM注意力 SE模块 STN模块 动态卷积
基于卷积神经网络图像风格迁移技术应用.docx
2022-12-06 14:19:34 3.79MB 计算机
针对传统计算机辅助检测系统中肺结节检测存在大量假阳性的问题,提出一种基于三维卷积神经网络的肺结节识别方法。首先,将传统二维卷积神经网络扩展为三维卷积神经网络,充分挖掘肺结节的三维特征,增强特征的表达能力;其次,将密集连接网络与SENet相结合,在加强特征传递和复用的同时,通过特征重标定自适应学习特征权重;另外,引入focal loss作为网络的分类损失函数,提高对难样本的学习。在LUNA16数据集上的实验结果表明:与当前的主流深度学习算法相比,所提网络模型在平均每组CT图像中假阳个数为1和4时的检出率达到了0.911和0.934,CPM得分为0.891,优于大部分主流算法。
2022-12-06 13:24:54 2.76MB 图像处理 计算机辅 肺结节 三维卷积
1
Python课程设计基于卷积神经网络的手写数字识别系统源码.zipPython课程设计基于卷积神经网络的手写数字识别系统源码.zipPython课程设计基于卷积神经网络的手写数字识别系统源码.zip
1
用卷积滤波器matlab代码 杨凌霄 该存储库包含未发布的技术报告的Matlab代码(也包含在此存储库中)。 声明:该报告已被一些顶级会议拒绝。 作者是个懒惰的人,不会重新提交任何其他会议或期刊。 但是作者本人认为这是一件好事,可能对其他人有所帮助。 介绍 最先进的轻量级跟踪器(大约100 KB) 先前有关回归跟踪器的大多数研究主要是探索用于特征提取的深层模型,然后使用复杂的体系结构进行在线检测。 这样的系统具有大量可训练的参数,从而带来严重过度拟合的风险。 而且,日益复杂的模型严重损害了许多实际应用的速度。 最近,已经提出了几种基于轻型结构的判别相关滤波器(DCF)来跟踪问题,而它们的性能却远远落后于一些最新的跟踪器。 我们认为,DCF经常学习单个线性模板,无法很好地将目标与周围环境区分开。 此外,在此类跟踪器中通过线性插值进行的模板更新将包括许多嘈杂的示例,从而降低了训练后的模型的质量。 在本文中,我们提出了一个简单而有效的系统,称为LiteCNT。 对于整个跟踪过程,我们的算法仅包含三个卷积层。 另外,引入了多区域卷积算子以进行回归输出。 这个想法很简单,但是功能强大,因为它使我
2022-12-04 20:43:15 5MB 系统开源
1
针对目前行人重识别技术的缺点,提出一种基于Siamese网络的行人重识别方法.首先使用Dropout算法对卷积神经网络进行改良,降低发生过拟合问题的概率;而后构造一个Siamese网络,将CNN (Convolution Neural Network)中特征提取和检验相融合,提高图像识别的效率和准确率;最后利用度量学习算法中的马氏距离作为检索图像匹配相似度的评价指标.实验结果表明:针对Market-1501数据集,该方法可以有效提高采用卷积神经网络的行人重识别方法识别效率和准确率.
1
基于CNN(卷积神经网络)的时间序列预测python源码+超详细注释 以CNN网络模型为示例,介绍了各种不同数据类型的网络结构 重点包含: 1.如何构造输入输出数据的形状 2.如何配置合适的网络参数来接受这些输入输出训练数据 本教程的目的是提供不同类型的时间序列预测模型的独立示例,作为模板,您可以针对特定的时间序列预测问题进行复制和调整
2022-12-02 14:29:40 18KB CNN 时间序列预测