学习将结构知识整合到图像修复中 AAAI 2020论文“学习结合用于图像修补的结构知识”的简介和源代码。 您可以在或获取论文。 引文 @inproceedings{jie2020inpainting, title={Learning to Incorporate Structure Knowledge for Image Inpainting}, author={Jie Yang, Zhiquan Qi, Yong Shi}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, volume={34}, number={7}, pages={12605-12612}, year={2020} } 介绍 该项目开发了一个多任务学习框架,该框架试图结合图像结构知识来辅助
2023-03-17 13:37:06 2.82MB 系统开源
1
MapReduce-机器学习 一些机器学习算法的 Map-Reduce 实现
2023-03-16 12:37:40 36KB Python
1
深度学习中RBM的Matlab代码工具包,帮助更好的理解Deep learning
2023-03-16 09:40:28 14.09MB Deep Learning
1
DoubleML-Python中的双机学习 Python软件包DoubleML提供了的双重/无偏机器学习框架的 。 它建立在(Pedregosa等,2011)。 请注意,Python软件包是与基于的R twin一起开发的。 R包也可以在和 。 文档和维护 文档和网站: : DoubleML当前由和维护。 可以将错误报告给问题跟踪器,为 。 主要特点 双重/无偏机器学习 部分线性回归模型(PLR) 部分线性IV回归模型(PLIV) 互动回归模型(IRM) 交互式IV回归模型(IIVM) DoubleML的面向对象的实现非常灵活。 模型类DoubleMLPLR , Doub
2023-03-15 23:00:41 207KB python data-science machine-learning statistics
1
DeepSpeech:DeepSpeech是一种开源嵌入式(离线,设备上的)语音到文本引擎,可以在从Raspberry Pi 4到大功率GPU服务器的各种设备上实时运行
2023-03-15 21:18:57 6.19MB machine-learning embedded deep-learning offline
1
Algebra, Topology, Differential Calculus, and Optimization TheoryFor Computer Science and Machine LearningJean Gallier and Jocelyn Quaintance Department of Computer and Information ScienceUniversity of Pennsylvania Philadelphia, PA 19104, USA e-mail: jean@cis.upenn.educ:copyright: Jean GallierAugust 2, 20192ContentsContents 31 Introduction 172 Groups, Rings, and Fields 19 2.1 Groups, Subgroups, Cosets . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Cyclic Groups . . . . . . . . . .
2023-03-15 20:47:53 19.85MB Papers Specs Decks Manuals
1
班级增量学习 文件 用于班级增量学习的自适应聚合网络,CVPR2021。[ ] [] 助记符训练:无需忘记的多级增量学习,CVPR2020。[ ] [] 引文 如果它们对您的工作有帮助,请引用我们的论文: @inproceedings { Liu2020AANets , author = { Liu, Yaoyao and Schiele, Bernt and Sun, Qianru } , title = { Adaptive Aggregation Networks for Class-Incremental Learning } , booktitle = { The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) } , year = { 20
1
对抗图书馆 该库包含与PyTorch中实施的对抗性攻击有关的各种资源。 它针对寻求最新攻击实施方案的研究人员。 编写代码是为了最大程度地提高效率(例如,通过偏爱PyTorch的底层函数),同时保持简单性(例如,避免抽象)。 因此,大多数库(尤其是攻击)都是使用纯函数实现的(只要有可能)。 在着重于攻击的同时,该库还提供了一些与对抗性攻击有关的实用程序:距离(SSIM,CIEDE2000,LPIPS),可见回调,预测,损失和辅助功能。 最值得注意的是,来自utils/attack_utils.py的功能run_attack对具有给定输入和标签且具有固定批处理大小的模型进行了攻击,并报告了与复杂性相关的指标(运行时和向前/向后传播)。 依存关系 该库的目标是使用最新版本的PyTorch进行更新,以便可以定期更新依赖项(可能会导致重大更改)。 pytorch> = 1.7.0 火炬视觉>
1
用于学习分子图的分层消息间传递 这是用于学习分子图的分层消息间传递的 PyTorch 实现,如我们的论文中所述: Matthias Fey、Jan-Gin Yuen、Frank Weichert:(GRL+ 2020) 要求 (>=1.4.0) (>=1.5.0) (>=1.1.0) 实验 可以通过以下方式运行实验: $ python train_zinc_subset.py $ python train_zinc_full.py $ python train_hiv.py $ python train_muv.py $ python train_tox21.py $ python train_ogbhiv.py $ python train_ogbpcba.py 引用 如果您在自己的工作中使用此代码,请引用: @inproceedings{Fey/etal/2020,
1
对 Deep convolutional network cascade for facial point detection[CVPR13]一文的复现,可演示的可执行文件。 目前只实现了第一层。
2023-03-14 22:14:38 8.61MB 深度学习 deep learning 人脸标注
1