C++代码是直接调动摄像头,效率比较低,识别准确率也有待提高,有很大的优化空间。 https://blog.csdn.net/OEMT_301/article/details/103789392
2023-10-02 22:11:30 445KB 粒子滤波
1
本资源是基于Java的Kalman滤波算法,可以作为一种性能较为优良的滤波器,滤去极端值。本资源可以直接将SRC文件夹中的两个子文件夹复制并使用。
2023-09-26 23:13:00 221KB Java 卡尔曼滤波 Kalman Filter
1
stm32单片机AD采集常用的十种滤波算法
2023-09-26 11:15:39 1.59MB 单片机 stm32 算法 嵌入式硬件
1
在VC中实现各种滤波 通过该工程实例可以熟练掌握在VC中如何实现信号滤波,并且代码可移植
2023-09-26 00:22:44 6.46MB 滤波 VC源代码
1
各种有源无源滤波器设计,一阶二阶滤波器设计,非常详细,非常好用。
2023-09-21 14:55:15 1.17MB 滤波器,低通
1
卡尔曼滤波在雷达目标跟踪中的应用 matlab程序 卡尔曼滤波在雷达目标跟踪中的应用 matlab程序 卡尔曼滤波在雷达目标跟踪中的应用 matlab程序 卡尔曼滤波在雷达目标跟踪中的应用 matlab程序
2023-09-16 13:31:52 29KB 卡尔曼 目标跟踪 matlab 程序
1
1 Introduction 1 1.1 Chapter Focus, 1 1.2 On Kalman Filtering, 1 1.3 On Optimal Estimation Methods, 6 1.4 Common Notation, 28 1.5 Summary, 30 Problems, 31 References, 34 2 Linear Dynamic Systems 37 2.1 Chapter Focus, 37 2.2 Deterministic Dynamic System Models, 42 2.3 Continuous Linear Systems and their Solutions, 47 2.4 Discrete Linear Systems and their Solutions, 59 2.5 Observability of Linear Dynamic System Models, 61 2.6 Summary, 66 Problems, 69 References, 3 Probability and Expectancy 73 3.1 Chapter Focus, 73 3.2 Foundations of Probability Theory, 74 3.3 Expectancy, 79 3.4 Least-Mean-Square Estimate (LMSE), 87 3.5 Transformations of Variates, 93 3.6 The Matrix Trace in Statistics, 102 3.7 Summary, 106 Problems, 107 References, 110 4 Random Processes 111 4.1 Chapter Focus, 111 4.2 Random Variables, Processes, and Sequences, 112 4.3 Statistical Properties, 114 4.4 Linear Random Process Models, 124 4.5 Shaping Filters (SF) and State Augmentation, 131 4.6 Mean and Covariance Propagation, 135 4.7 Relationships Between Model Parameters, 145 4.8 Orthogonality Principle, 153 4.9 Summary, 157 Problems, 159 References, 167 5 Linear Optimal Filters and Predictors 169 5.1 Chapter Focus, 169 5.2 Kalman Filter, 172 5.3 Kalman–Bucy Filter, 197 5.4 Optimal Linear Predictors, 200 5.5 Correlated Noise Sources, 200 5.6 Relationships Between Kalman and Wiener Filters, 201 5.7 Quadratic Loss Functions, 202 5.8 Matrix Riccati Differential Equation, 204 5.9 Matrix Riccati Equation in Discrete Time, 219 5.10 Model Equations for Transformed State Variables, 223 5.11 Sample Applications, 224 5.12 Summary, 228 Problems, 232 References, 235 6 Optimal Smoothers 239 6.1 Chapter Focus, 239 6.2 Fixed-Interval Smoothing, 244 6.3 Fixed-Lag Smoothing, 256 6.4 Fixed-Point Smoothing, 268 7 Implementation Methods 281 7.1 Chapter Focus, 281 7.2 Computer Roundoff, 283 7.3 Effects of Roundoff Errors on Kalman Filters, 288 7.4 Factorization Methods for “Square-Root” Filtering, 294 7.5 “Square-Root” and UD Filters, 318 7.6 SigmaRho Filtering, 330 7.7 Other Implementation Methods, 346 7.8 Summary, 358 Problems, 360 References, 363 8 Nonlinear Approximations 367 8.1 Chapter Focus, 367 8.2 The Affine Kalman Filter, 370 8.3 Linear Approximations of Nonlinear Models, 372 8.4 Sample-and-Propagate Methods, 398 8.5 Unscented Kalman Filters (UKF), 404 8.6 Truly Nonlinear Estimation, 417 8.7 Summary, 419 Problems, 420 References, 423 9 Practical Considerations 427 9.1 Chapter Focus, 427 9.2 Diagnostic Statistics and Heuristics, 428 9.3 Prefiltering and Data Rejection Methods, 457 9.4 Stability of Kalman Filters, 460 9.5 Suboptimal and Reduced-Order Filters, 461 9.6 Schmidt–Kalman Filtering, 471 9.7 Memory, Throughput, and Wordlength Requirements, 478 9.8 Ways to Reduce Computational Requirements, 486 9.9 Error Budgets and Sensitivity Analysis, 491 9.10 Optimizing Measurement Selection Policies, 495 9.11 Summary, 501 Problems, 501 References, 502 10 Applications to Navigation 503 10.1 Chapter Focus, 503 10.2 Navigation Overview, 504
2023-09-15 18:26:06 43.47MB 清晰版
1
用卷积滤波器matlab代码硕士学位论文-CNN和CWT用于功率质量扰动分类 此项目与Itajubá联邦大学的Rafael S. Salles题为“高级信号处理和深度学习在质量性能综合度量中的模式识别的使用:智能电网应用”的硕士学位论文相关。 以下是MATLAB和Simulink代码的详细信息。 电能质量(PQ)并不是一个新主题,但绝不能以任何方式忽略它,因为它的性能参数将揭示用户设备和电网之间是否足够的问题。 随着电力系统的不断变革,其特点是可再生能源的高度普及,基于电力电子设备的组件在网络中的大量插入以及发电的分散化,这些问题变得越来越重要。 在智能电网中,寻求用于解决PQ干扰问题的更高级解决方案的解决方案。 在这种情况下,先进的信号处理在处理网络和支持各种应用以及人工智能(AI)方面发挥着至关重要的作用,而人工智能(AI)已在为应用提供多个领域的创新解决方案方面发挥了重要作用。 这项研究调查了高级信号处理和深度学习技术在PQ障碍信号的模式识别和分类中的用途。 为此,带有滤波器组的连续小波变换用于从具有电压干扰的信号中生成具有时频表示的二维图像。 这项工作旨在使用卷积神经网络(CN
2023-09-07 20:24:41 93KB 系统开源
1
LCL滤波器传递函数(阻抗法)推导-Bing
2023-08-31 10:09:41 171KB LCL滤波器
1
基于一阶RC模型,电池带遗忘因子递推最小二乘法+扩展卡尔曼滤波算法(FFRLS+ EKF),参数与SOC的在线联合估计,matlab程序
2023-08-12 15:21:23 164KB matlab 最小二乘法 算法
1