B端C端常用高频小图标,分类整理
2023-12-14 18:07:25 637KB
1
该数据集由17509张图像组成,包含7种不同类别的杂草图像和1个负类图像,使用csv对每一图像的类别进行标注。数据集中的每幅图像统一被缩放为256*256像素大小,该数据集主要应用于基于深度学习或机器学术的杂草分类、检测等方面的研究。
2023-12-12 00:18:04 470.38MB 深度学习 分类算法
1
鹈鹕算法(POA)优化最小二乘支持向量机分类预测,POA-LSSVM分类预测,多输入单输出模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-12-11 20:19:57 87KB 支持向量机
1
鲸鱼算法(WOA)优化最小二乘支持向量机分类预测,WOA-LSSVM分类预测,多输入单输出模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-12-11 20:19:42 87KB 支持向量机
1
灰狼算法(GWO)优化最小二乘支持向量机分类预测,GWO-LSSVM分类预测,多输入单输出模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-12-11 14:43:02 88KB 支持向量机
1
蛇群算法(SO)优化最小二乘支持向量机分类预测,SO-LSSVM分类预测,多输入单输出模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-12-11 14:35:39 88KB 支持向量机
1
MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost多输入分类预测 基本介绍 1.MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost多输入分类预测; 2.运行环境为Matlab2018b; 3.输入多个特征,分四类预测; 4.data为数据集,excel数据,前多列输入,最后输出四类标签,主程序运行即可,所有文件放在一个文件夹; 5.可视化展示分类准确率。 模型描述 SVM-Adaboost支持向量机结合AdaBoost多输入分类预测是一种基于机器学习和集成学习的预测方法,其主要思想是将支持向量机(SVM)和AdaBoost算法相结合,通过多输入模型进行预测。 具体流程如下: 数据预处理:对原始数据进行清洗、归一化和分割等预处理步骤。 特征提取:利用SVM模型对数据进行特征提取,得到多个特征向量作为AdaBoost算法的输入。 AdaBoost模型训练:利用AdaBoost算法对多个特征向量进行加权组合,得到最终的预测结果。 模型评估:对预测结果进行评估。 模型优化:根据评估结果对模型进行优化,可以尝试调整模型的参数、改变AdaBoos
2023-12-11 12:48:07 1KB matlab 支持向量机
1
金豺算法(GJO)优化双向长短期记忆神经网络的数据分类预测,GJO-BiLSTM分类预测,多输入单输出。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-12-11 12:21:46 75KB 神经网络
1
结合实例,并以充分的图表数据,详解了"关系点图解法"的水化学分类法及图中显现出的水化学特征,并与大家熟知且一直沿用的"舒卡列夫"及"皮帕尔"分类方法进行比较,结果表明:"关系点图解法"同前二者反映出的水化学特征总体一致、结果可靠。在3个"关系图"中,不仅能直观地显现出阴(或阳)离子含量的分布区间,同时也能直接读取水化学类型。
2023-12-08 22:00:52 758KB 行业研究
1
基于麻雀算法优化深度置信网络(SSA-DBN)的分类预测,优化参数为隐藏层节点数目,迭代次数,学习率。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-12-07 13:52:07 82KB 网络 网络
1