Hata模型和Hata模型的PCS扩展的路径损耗分析MATLAB源码,无线通信原理与应用,包括中小城市和大城市中的市区、郊区和农村。
2021-03-02 22:00:13 2KB Hata Hata PCS 无线通信原理与应用
1
高双折射低损耗太赫兹波导:椭圆形聚合物管
2021-03-01 17:06:19 1.12MB 研究论文
1
针对高功率密度运转下的光纤激光对其适用的光纤器件的许多特殊要求,设计了高功率密度下光纤性能的测试系统。综合比较论证了截断法、插入损耗法、后向散射法三种测试方法。基于插入损耗法设计了双光路光纤测量系统,通过双光路同时测量被测光纤和参考光纤的插入损耗,利用参考光纤光路监控校准输入信号光功率,提高测量精度。对系统的测试方法和测量参量理论上进行了推导和说明,分析了系统的传输效率,设计测量精度可达到插入损耗不大于0.5 dB,回波损耗不小于50 dB。
2021-02-26 14:07:23 997KB 光纤光学 插入损耗 回波损耗
1
为了测量金属板材在拉伸作用下的微应变,设计了以中心波长为1550 nm的多模光纤宏弯损耗传感器为传感元件的轴向微应变测量系统。该传感器将多模光纤传感环垂直固定在被测板材上,当板材被拉神时,光纤传感环的弯曲损耗效应明显增强,导致背向瑞利散射光强发生剧烈波动。搭建了轴向微应变测量系统,根据光时域反射原理获得了背向瑞利散射的光强变化,从而计算出金属材料应变值,可实现分布式实时测量。实验结果表明,该多模光纤宏弯损耗传感器的弯曲敏感区半径约为3~6 mm,微应变测量范围约为500~3000 με,微应变测量精度约为40 με。
2021-02-24 18:04:52 3.32MB 光纤光学 微应变 宏弯损耗 瑞利散射
1
主要研究了保偏光纤与Y型波导输入端的对准耦合。基于模场重叠积分法,数值计算5个自由度上的对准偏差对耦合损耗的影响,并设计了一种基于数字图像的实验方案。仿真与实验结果吻合较好,证明该实验方案可行。结果表明:横向位错X和Y对耦合损耗的影响最大,纵向间距Z对耦合损耗的影响较小,而角度α和β变化时产生的耦合损耗主要是由附加横向位移引起的,单纯的角度变化对耦合损耗的影响极小。若要求对准偏差损耗低于0.5 dB,则横向位错与纵向间距的容差范围分别为-1~1 μm和-20~20 μm。本研究为后续自动耦合系统的研究提供参考。
2021-02-23 09:04:47 8.31MB 光纤光学 保偏光纤 Y型波导 耦合损耗
1
窄带宽显着限制了电磁披风的发展。 在这里,我们在数值上和实验上都展示了一条通往宽带低损耗电磁披风的新途径。 这款斗篷是全金属的,没有共振,避免了窄带宽和高损耗的问题。 为了验证建议的披风,制作并测试了在X波段工作的样品。 仿真和实验结果都令人信服地证实了这种披风的宽带特性。
2021-02-23 09:04:45 550KB 研究论文
1
从麦克斯韦方程和材料密度方程出发,详细推导了受激布里渊增益和损耗同时存在时的矢量模型。推导过程中,从数学表达式上阐述了电致伸缩效应对受激布里渊散射的作用。理论分析发现布里渊增益谱和损耗谱参数(谱宽和频移)并不完全一致。推导出了琼斯空间和斯托克斯空间中的矢量模型,建立了一个较完整的关于受激布里渊散射的基础理论模型,可以为研究基于布里渊散射的偏振效应、偏振牵引和双折射测量提供支持。最后,基于此矢量模型进行仿真分析,得到了平均布里渊增益和双折射大小以及偏振态的关系。
2021-02-07 20:06:07 829KB 非线性光 受激布里 矢量模型 双折射
1
利用频域有限差分法,分析了两种典型晶硅电池结构的Ag背反镜的吸收损耗。研究表明:平板型晶硅电池Ag背反镜的损耗主要是由本征吸收和导模共振吸收引起,而表面等离子体共振吸收使TM模的吸收峰峰值大于TE模的吸收峰峰值;织构型的晶硅电池内部光场分布复杂,可在光垂直入射情况下,使TE模和TM模均在有源层中出现较强的导模共振效应,且TM模还可在Ag背反镜中激励起等离子体共振效应,从而使织构型晶硅电池Ag背反镜的吸收谱表现为多峰值特性,且其吸收峰峰值大于平板型晶硅电池的吸收峰峰值。
2021-02-07 16:04:03 6.16MB 光学器件 晶硅电池 背反镜 光吸收
1
设计了一种高效的、基于多模干涉(MMI)的椭圆型十字光波导, 通过增加模式匹配器和调整自聚焦点位置, 降低其传输损耗。COMSOL仿真表明该波导在1550 nm 波长处的透射率高达96.5%, 串扰损耗小于2×10-5, 而传统的椭圆型十字波导的透射率仅为91.2%。并且对椭圆型MMI的成像规律进行了理论分析和仿真验证, 结果表明这种新型椭圆型结构不但在1550 nm处表现出高效性, 对整个1500~1600 nm的通信波段都具有非常低的损耗(小于0.2 dB)和串扰(小于-42 dB)。这种十字光波导尺寸小、结构简单, 只需要在硅上绝缘体(SOI)基底材料上融刻一次即可实现, 制备工艺简单, 有利于节约成本和批量生产, 广泛适用于未来的集成光路。
2021-02-04 13:10:48 6.76MB 集成光学 波导 多模干涉 损耗
1