Logistic regression(with R) 逻辑回归(R语言)
2021-07-12 21:40:17 125KB 逻辑回归
1
这是一组用于进行贝叶斯线性回归的 MATLAB 函数。 派生也包括在内。
2021-06-30 13:47:04 932KB matlab
1
GEE学习ppt
2021-06-22 12:02:17 341KB gee GEE
1
深度系列 用于时间序列预测的深度学习模型。 楷模 Seq2Seq /注意 WaveNet 变压器/变压器 快速开始 from deepseries . models import Wave2Wave , RNN2RNN from deepseries . train import Learner from deepseries . data import Value , create_seq2seq_data_loader , forward_split from deepseries . nn import RMSE , MSE import deepseries . functional as F import numpy as np import torch batch_size = 16 enc_len = 36 dec_len = 12 series_len = 1000
2021-06-21 16:57:37 111KB deep-learning regression pytorch kaggle
1
sklearn实现梯度下降(SGDRegressor)的Jupyter NoteBook文件
2021-06-21 09:10:06 3KB 机器学习 随机梯度下降
1
套索 概述 这是套索的实现。 拉索[ ] 套索的后裔坐标[J Friedman et al。, ; ] 最小角度回归(LARS)[Efron et al。, ] 有关算法的详细信息,请参见以下用日语编写的博客条目。 经过测试的环境 python == 3.8.3 numpy == 1.18.5 sklearn == 0.23.2
1
GBDT_Simple_Tutorial(梯度提升树简易教程) 简介 利用python实现GBDT算法的回归、二分类以及多分类,将算法流程详情进行展示解读并可视化,便于读者庖丁解牛地理解GBDT。 项目进度: 回归 二分类 多分类 可视化 算法原理以及公式推导请前往blog: 依赖环境 操作系统:Windows/Linux 编程语言:Python3 Python库:pandas、PIL、pydotplus, 其中pydotplus库会自动调用Graphviz,所以需要去下载graphviz的-2.38.msi ,先安装,再将安装目录下的bin添加到系统环境变量,此时如果再报错可以重启计算机。详细过程不再描述,网上很多解答。 文件结构 | - GBDT 主模块文件夹 | --- gbdt.py 梯度提升算法主框架 | --- decision_tree.py 单颗树生成,包括节点划分
1
PERMUTATION TESTS FOR JOINPOINT REGRESSION WITH APPLICATIONS TO CANCER RATES
2021-06-14 22:06:31 153KB apc statistics
1
logistic_regression 用logistic回归预测糖尿病数据集_我在糖尿病数据集上使用了logistic回归和决策树分类器模型,在对两个模型进行训练和测试数据集比率相同后,我发现logistic回归给出的准确性更高,大约为80%,而决策树分类器给出了约75%。
2021-06-12 15:32:47 12KB JupyterNotebook
1