GKT 本文。 GKT的体系结构如下: 设置 要运行此代码,您需要以下内容: 配备GPU的机器 python3 numpy,pandas,scipy,scikit-learn和火炬程序包: pip3 install numpy==1.17.4 pandas==1.1.2 scipy==1.5.2 scikit-learn==0.23.2 torch==1.4.0 请注意,不要使用0.23.4版本的熊猫,因为在processing.py文件中执行以下命令时,它将导致错误。 df.groupby('user_id', axis=0).apply(get_data) 如果您使用“ assistment_test15.csv”文件进行测试,则在pandas 0.23.4版本中,经过groupby用户后,它将返回16名学生。 但是,如果您在1.x版本中使用熊猫,它将返回15名学生。 (此
1
网格花园 Grid Garden是一款用于学习CSS网格布局的游戏。 在检查。 浏览器支持 IE浏览器/边缘 火狐浏览器 Chrome 苹果浏览器 歌剧 IE11,边缘 52岁以上 57岁以上 10.1+ 44岁以上 作者 托马斯公园 译者 我感谢这些贡献者的翻译。 阿拉伯文,( 保加利亚语by 加泰罗尼亚语( 中国简体由 中国传统的 荷兰语 波斯语的 法文( 芬兰语, 德国人 希腊文 匈牙利语,( 意大利语 日语 韩文( 拉脱维亚人 挪威人,( 波兰语 (葡萄牙语)的葡萄牙语(巴西) 葡萄牙语(葡萄牙) 罗马尼亚语由 俄语 西班牙语,作者:
2023-03-22 14:21:23 998KB css game learning tutorial
1
RL4J:Java 强化学习 有关 RL4J 的支持问题,请联系 。 RL4J 是一个与 deeplearning4j 集成并在 Apache 2.0 开源许可下发布的强化学习框架。 DQN(带双 DQN 的深度 Q 学习) 异步强化学习(A3C,异步 NStepQlearning) 低维(信息数组)和高维(像素)输入。 一篇有用的博客文章,向您介绍强化学习、DQN 和 Async RL: 快速开始 安装 可视化 厄运 Doom 还没有准备好,但如果你喜欢冒险,你可以通过一些额外的步骤让它工作: 您将需要 vizdoom,编译本机库并将其移动到项目根目录中的文件夹中 export MAVEN_OPTS=-Djava.library.path=THEFOLDEROFTHELIB mvn compile exec:java -Dexec.mainClass="YOURMAINCL
1
TRPO-张量流 纯TensorFlow中的信任区域策略优化(TRPO)
1
在下一篇文章中,我们将预处理要输入到机器学习模型的数据集。
2023-03-20 21:55:25 1.58MB C# artificial-intelligence deep-learning
1
CSDN上Pattern Recognition and Machine Learning_PRML这本书下载的积分要太高,所以干脆自己上传一个好了,打开网盘链接可以看到有没有失效,txt文档中有密码,祝大家科研顺利!https://pan.baidu.com/s/1Rlx_2pmnwTSQZ8zF3urRrA
2023-03-20 13:59:15 64B ML
1
Hands-On Machine Learning with Scikit-Learn and TensorFlow 英文 高清pdf 网络搜集,值得一读
2023-03-19 12:15:19 43.29MB Machine Learning TensorFlow 英文
1
训练12小时后512x512鲜花,1 gpu 训练12小时后256x256朵鲜花,1 gpu 比萨 ``轻巧''GAN 在Pytorch的ICLR 2021中提出的实现。 本文的主要贡献是发生器中的跳层激励,以及鉴别器中的自动编码自监督学习。 引用单行摘要“在经过数小时培训的情况下,可以在1024 g分辨率的数百张图像上融合在单个gpu上”。 安装 $ pip install lightweight-gan 使用 一个命令 $ lightweight_gan --data ./path/to/images --image-size 512 每隔1000次迭代,模型将保存到./models/{name} ,模型中的样本将保存到./results/{name} 。 name将是default ,默认情况下。 训练设定 深度学习从业人员的自我解释能力很强 $ lightweight_ga
1
联邦蒸馏是联邦学习中的一种新的算法范式,使客户端能够训练不同的网络架构。在联邦蒸馏中,学生可以通过提取客户端对公共服务器数据的平均预测来学习他人的信息,而不会牺牲他们的个人数据隐私。然而,仅使用平均软标签作为所有学生的老师的方法会受到客户端草案的影响,尤其是当本地数据是异构时。软标签是模型之间的平均分类分数。在本文中,我们提出了一个新的框架FedMMD(基于多教师和多特征蒸馏的联邦学习),该框架对客户端之间的不同数据分布具有鲁棒性。FedMMD扩展了FD训练程序中的聚集阶段和蒸馏阶段。与在所有学生中共享同一教师的方法相反,FedMMD 为每个需要进行多次独立蒸馏的学生分配不同的教师。由于每个模型都可以单独视为教师,FedMMD解决了共享教师仅具有平均性能由平均软标签引起的问题。同时,在每次蒸馏中,FedMMD没有使用模型在公共数据上的平均软标签作为教师,而是引入了中间表示和软标签的组合作为蒸馏目标,以了解教师的更多信息细节。我们在两个公共数据集(CIFAR10和MINIST)上的广泛实验证明了所提出的方法的性能。
2023-03-18 22:08:53 2.28MB 深度学习 知识蒸馏
1
教与学优化算法Teaching–Learning-Based Optimization (TLBO)matlab代码
1