预测蛋白质功能是后基因组时代最具挑战性的问题之一,在大规模数据下采用高性能的功能预测算法能够节省大量的实验时间和成本。利用基于蛋白质相互作用网络的全局优化模型,提出了蛋白质功能预测的蚁群优化算法,算法在考虑全局模型的同时还利用了网络的先验信息,提高了搜索效率,仿真结果表明,蚁群优化算法能够有效对蛋白质功能进行预测,并且对蛋白质相互作用网络中的假阳性、假阴性数据具有较高的容错能力。
2021-12-17 22:23:05 348KB 自然科学 论文
1
针对传统PID控制系统参数整定过程存在的在线整定困难和控制品质不理想等问题,结合BP神经网络自学习和自适应能力强等特点,提出采用BP神经网络优化PID控制器参数。其次,为了加快BP神经网络学习收敛速度,防止其陷入局部极小点,提出采用粒子群优化算法来优化BP神经网络的连接权值矩阵。最后,给出了PSO-BP算法整定优化PID控制器参数的详细步骤和流程图,并通过一个PID控制系统的仿真实例来验证本文所提算法的有效性。仿真结果证明了本文所提方法在控制品质方面优于其它三种常规整定方法。
1
粒子群优化算法(Particle Swarm Optimization,PSO)是进化计算的一个分支,是一种模拟自然界的生物活动的随机搜索算法。 PSO模拟了自然界鸟群捕食和鱼群捕食的过程。通过群体中的协作寻找到问题的全局最优解。它是1995年由美国学者Eberhart和Kennedy提出的,现在已经广泛应用于各种工程领域的优化问题之中。 ———————————————— 介绍链接:https://blog.csdn.net/qq_44186838/article/details/109212631
详细介绍链接:https://blog.csdn.net/qq_44186838/article/details/109207781
2021-12-14 09:08:24 5KB 蚁群算法 ACO 智能优化算法 python
Python复现遗传算法、蚁群优化算法、粒子群算法、禁忌搜索算法 详细算法介绍链接:https://blog.csdn.net/qq_44186838/article/details/109181453
为了提高多目标优化算法解集的分布性和收敛性,提出一种基于分解和差分进化的多目标粒子群优化算法(dMOPSO-DE).该算法通过提出方向角产生一组均匀的方向向量,确保粒子分布的均匀性;引入隐式精英保持策略和差分进化修正机制选择全局最优粒子,避免种群陷入局部最优Pareto前沿;采用粒子重置策略保证群体的多样性.与非支配排序(NSGA-II)算法、多目标粒子群优化(MOPSO)算法、分解多目标粒子群优化(dMOPSO)算法和分解多目标进化-差分进化(MOEA/D-DE)算法进行比较,实验结果表明,所提出算法在求解多目标优化问题时具有良好的收敛性和多样性.
1
单变量粒子群优化算法演示程序,可观察研究粒子在优化过程中的行为。代码为 C++ & VS2010。
2021-12-11 15:26:40 20.71MB 粒子群 优化算法
1
针对粒子群优化算法局部搜索能力不足和易出现早熟收敛的问题,提出一种基于动态随机搜索和佳点集构造的改进粒子群优化算法。该算法通过引入动态随机搜索技术,对种群当前最优位置进行局部搜索;采用佳点集构造对陷入早熟收敛的种群重新初始化;引入负梯度方向直线搜索来加速算法寻优。仿真实验结果表明,与标准粒子群优化(SPSO)算法和耗散粒子群优化(DPSO)算法比较,提出的改进算法具有快速的收敛能力而且能有效地跳出局部最优,优化性能得到明显提高。
2021-12-10 23:19:09 320KB 工程技术 论文
1
视频讲解了什么是粒子群算法 使用matlab 进行了粒子群算法的实现 详细的代码注释
2021-12-08 17:13:00 5.99MB 粒子群 优化算法
1
使用matlab语言编程的粒子群算法对含分布式电源的配电网进行多目标优化