交通标志的目标检测算法在计算机视觉领域一直属于热点研究问题,改进的优化算法不断地被提出。我们以[CCTSDB](https://github.com/csust7zhangjm/CCTSDB)数据集为例,用YOLOV5算法做交通标志识别。中国交通标志检测数据集(CCTSDB,Chinese Traffic Sign Detection Benchmark)由长沙理工大学 综合交通运输大数据智能处理湖南省重点实验室张建明老师团队制作完成。 目前的标注数据只有三大类:指示标志、禁止标志、警告标志。
2023-03-22 22:18:03 423.6MB 数据集 交通标志检测 YOLOV5 目标检测
背景图像差分法是运动目标实时检测中常用的方法,但缺乏背景图像随监视场景光照变化而及时更新的合理方法,限制了该方法的适应性。对此,文章首先提出了一种自适应背景更新方法;然后利用最大类间方差法实现运动目标的自适应阈值分割,并利用基于形态学方法的连通区检测算法检测运动目标;最后以Kalman滤波为运动模型实现对运动目标的连续跟踪。实验结果表明:所提方法可随着光照条件的变化,实时、准确地检测出运动目标并实现稳定跟踪。
2023-03-22 15:22:16 297KB 工程技术 论文
1
基于自适应背景模型的运动目标检测,陈雷,邹琪,运动目标检测作为许多计算机视觉应用中最关键的首要处理环节,在诸如视频监控、目标跟踪、视频搜索等领域中都有着广泛的应用。正
2023-03-22 15:15:37 742KB 运动目标检测
1
该资料使用时间差分、背景差、自适应背景更新等方法进行运动目标跟踪。
2023-03-22 15:10:36 1.99MB 运动目标 跟踪 自适应背景
1
随着计算机视觉方向的发展与各种开源库的涌现,目标检测与图像识别的步骤也越来越规范并且趋于简单化。 本次大作业采用Pycharm编辑器,应用Python的OpenCV图像处理库,基于深度学习的卷积神经网络来识别图像中的手写的大写英文字母。具体功能步骤是:对图像进行切片、目标检测、图像识别、图像定位、识别出来的字母重新写入到图片中。
2023-03-20 15:02:35 9.46MB 图像处理 手写体识别 代码与报告
1
为了使采摘机器人在收获番茄时更加精准地识别目标果实,采用改进后的 Cascade rcnt网络对温室内的番茄果实进行目标检测。将 Cascade rann网络中的非极大值抑制算法替换为Sof-NMS( soft non- maximum suppression)算法,采用适合番茄形状的锚框,增强网络对重叠果实的识别能力,与原 Cascade rann网络相比,目标识别的准确率提高了近2%,在识别番茄果实的同时,该网络对番茄的成熟度进行了简单分类。为进一步验证网络性能,将改进网络与经典的 Faster rann网络和YOO3网络进行对比。实验结果表明,改进网络能够准确地识别岀番茄果实,并对成熟番茄与未成熟番茄做出区分。该方法可为温室内番茄果实的采摘提供技术支持。
2023-03-18 16:54:52 2.59MB 神经网络机器人
1
基于时频图深度学习的雷达动目标检测与分类.pdf
2023-03-17 23:30:30 1.31MB
1
传统目标检测模型采用人工设计的目标特征,造成检测精度较差。基于深度学习的目标检测模型具有较高的检测精度,然而针对实时性和精度要求比较高的煤矿救援机器人应用场合,获取的图像信息较少且目标特征不明显,造成目标检测效果较差。为提高目标检测精度和速度,基于YOLO V3模型提出了一种多尺度特征融合的煤矿救援机器人目标检测模型。该模型主要包括特征提取和特征融合2个模块:特征提取模块采用空洞瓶颈和多尺度卷积获得更加丰富的图像特征信息,增强目标特征表达能力,提高了目标分类精度和检测速度;特征融合模块在特征金字塔中引入空间注意力机制,对含有丰富语义信息的高层特征图和含有丰富位置信息的低层特征图进行有效融合,弥补了高层特征图位置信息表达能力不足的缺点,提高了目标定位精度。将该模型部署在煤矿救援机器人嵌入式NVIDIA Jetson TX2平台上进行灾后环境目标检测实验,检测精度为88.73%,检测速度为28帧/s,满足煤矿救援机器人目标检测的实时性和精度需求。
1
目标检测、跟踪结果,详见我的博文“一种简单并行的轨迹关联算法”
2023-03-14 18:52:28 5.04MB skybox
1
本文来自csdn,本文主要介绍了目标检测算法和物体关键点检测的应用场景以及位置检测的算法特点。 目标检测概念 目标检测这里阐述两个应用场景,1为物体位置检测,2为物体关键点检测。 1物体位置检测 相比与图片分类,目标检测算法结果要求不仅识别出图片中的物理类别并且输出物体的位置
2023-03-13 21:39:44 1.2MB 目标检测算法汇集介绍
1