我找到的关于关于数据挖掘方向的优秀硕士论文,给初学者或写毕业论文的同学参考。
2020-04-21 17:02:07 13.45MB 数据挖掘 关联规则 优秀 硕士论文
1
基于关联规则的汽车销售客户管理系统的系统源代码和毕业论文。
2020-01-08 03:14:24 1.72MB 汽车销售
1
library(arules) library(Matrix) library(arules) library(arulesViz) library(grid) library(arulesViz) data('SunBai') summary(SunBai) #inspect函数查看SunBai数据集的前5次交易记录 inspect(SunBai[1:5]) #itemFrequency()函数可以查看商品的交易比例 itemFrequency(SunBai[,1:3]) #support=0.1,表示支持度至少为0.1 itemFrequencyPlot(SunBai,support=0.1) #topN=20,表示支持度排在前20的商品 itemFrequencyPlot(SunBai,topN=20) #利用transactionInfo函数查看前六数据 head(transactionInfo(SunBai))
2020-01-03 11:31:38 835B R语言 关联规则 apriori算法
1
最近几年,例如YAGO和DBpedia等大规模知识库发展有了很大的进步。知识库提供了大量的不同种类的实体信息,如人、国家、河流、城市大学等等,同时知识库包含了大量的在实体(entity)间的关系既事实(fact)。当今的知识库包含的数据量是巨大的通常有百万个实体和上亿个描述实体间关系的事实数据。 虽然目前的知识库存在大量的实体和事实数据,但是这样大规模的数据仍然不完整。目前构建知识库的方法主要有两种,一种是从大量的文本中抽取事实但这种方法必然会带来大量的噪声数据,第二是人工扩展,但这样的方法对于时间的开销是极大的。如果确保一个知识库是完整的则必须花费很大的努力来抽取大量的事实,并检查事实的正确性,因为只有正确的事实加入到知识库中才是有意义的。同时知识库的本身由于有足够的信息可以推理出更多的新的事实。例如有这样一个例子,一个知识库包含一组事实是孩子c有一个妈妈m,这样可以推理得出孩子妈妈的丈夫f很可能是孩子的父亲。该逻辑规则形式化的描述如下: motherof(m,c)∧marriedTo(m,f)⟹fatherof(f,c) 挖掘这种规则可帮助做一下四种事情:1、利用这种规则来推理出新的事实,而这些被挖掘出的新的事实可以使知识库更完整。2、这些规则可以检测出知识库潜在的错误例如一个陈述是一个与一个男孩无关的人是这个男孩的父亲,这样的陈述很可能是错误的。3、有很多推理工具依赖其他工具提供规则,所以这些被挖掘出来的规则可以用于推理。4、这些规则描述一个普遍的规律,这些规律可以帮我我们理解分析知识库中的数据,如找到一些国家通常与说同一种语言的国家交易。或结婚是一个对称关系,或使用同一个乐器的音乐家通常互相影响等等。 AMIE的目标是从RDF格式的知识库中挖掘如上所述的逻辑规则,在语义网(Semantic Web)中存在大量的RDF知识库如YAGO、Freebase和DBpedia等。这些知识库使用RDF三元组(S,P,O)提供二元关系(binary relation)的描述。由于知识库一般只包含正例而(S,P,O)没有反例(S,¬P,O),所以RDF这样的知识库中仅能通过正例来推理。进一步来说在RDF知识库上的操作是基于开放世界假设(OWA)的。在开放世界假设下,一个事实没有在知识库中存在那么我们不能说这个事实是错误的,只能说这个陈述是未知的。这与标准的数据库在封闭世界假设的设定有本质上的区别。例如在知识库中没有包含marry(a,b),在封闭世界假设中我们可以得出这个a没有和b结婚而在开放世界假设下我们只能说a可能结婚了也可能单身。 压缩包内包含AMIE可运行源代码与相应文档资料,欢迎下载参考
2020-01-03 11:27:46 2.43MB 不完整 知识库 关联规则 数据挖掘
1
weka是一款由Waikato大学研究的基于Java 的用于数据挖掘和知识发现的开源项目, 其中集成了大量能承担数据挖掘任务的机器学习算法, 包括对数据进行预处理、关联规则挖掘、分类、聚类等, 并提供了丰富的可视化功能。同时, 由于其是一款开源软件, 所以也可以用于数据挖掘的二次开发和算法研究。文章介绍了利用开源软件WEKA 作为数据挖掘工具, 通过Apriori 算法, 对高校图书馆流通历史数据进行挖掘分析。
2019-12-23 03:22:41 166KB 数据挖掘实例 weka 关联规则算法
1
matlab 实现,大家分享下
2019-12-21 22:24:43 91KB 关联规则
1
10.1 关联规则基本概念 10.2 关联规则算法原理 10.3 分层搜索经典算法-Apriori算法 10.4 并行挖掘算法 10.5 增量更新挖掘算法 10.6 多层关联规则挖掘 10.7 多维关联规则挖掘 10.8 约束性关联规则挖掘 10.9 数量关联规则挖掘 10.10 负关联规则挖掘算法 10.11 加权关联规则挖掘算法 10.12 应用实例分析 10.13 小结
1
经典的关联规则数据挖掘算法Apriori 算法广泛应用于各种领域,通过对数据的关联性进行了分析和挖掘,挖掘出的这些信息在决策制定过程中具有重要的参考价值。
2019-12-21 22:06:47 206KB apriori 关联规则 matlab
1
用MATLAB软件实现关联规则中频繁项集挖掘算法Apriori 调试可用 附带测试数据集 程序完整
2019-12-21 22:02:37 42KB MATLAB apriori 关联规则挖掘
1
C++简单实现关联规则挖掘中Apriori算法
2019-12-21 21:59:53 17KB Apriori C++
1