告密者:用于长序列时间序列预测的超越高效变压器(AAAI'21最佳论文) 这是以下文章中Informer的原始Pytorch实现: 。 特别感谢 Jieqi Peng @ 建立此存储库。 :triangular_flag: 新闻(2021年2月22日):我们提供了供友好使用。 :triangular_flag: 新闻(2021年2月8日):我们的线人论文被授予! 我们将继续进行这方面的研究,并对此仓库进行更新。 如果您发现我们的工作对您有帮助,请加注该回购并引用我们的论文。 图1. Informer的体系结构。 稀疏注意 自我注意分数形成一个长尾分布,其中“活动”查询位于“头”分数中,而“懒惰”查询位于“尾”区域中。 我们设计了ProbSparse Attention以选择“活动”查询而不是“惰性”查询。 带有Top-u查询的ProbSparse Attention通过概率分布形成了一个稀疏的Transformer。 Why not us
2022-01-19 22:30:20 847KB deep-learning time-series pytorch forecasting
1
Frequency Converter VFC x610 Series VFC 3610 : VFC 5610.pdf
2022-01-19 12:01:56 16.91MB 工业控制
Table of Integrals, Series, and Products (Eighth Edition) 数学积分微分工具书第七版
2022-01-19 10:02:10 7.41MB 工具书 数学积分微分
1
卡通Monsters素材,附带骨骼和模型动画
2022-01-14 14:17:25 67.14MB Unity RPG Monster
1
N-BEATS:神经基础扩展分析,用于可解释的时间序列预测(Keras,Pytorch) 链接到[]。 作者:Philippe Remy和Jean-Sebastien Dhr 训练开始时的N-Beats 相信我,再走几步,绿色曲线(预测值)就会与地面真实情况完全匹配:-) 安装 确保您在virtualenv中(推荐)并安装了python3。 从PyPI pip install nbeats-keras : pip install nbeats-keras 。 安装Pytorch: pip install nbeats-pytorch 。 从来源 安装基于MakeFile。 使用Keras安装N-Beats的命令: make install-keras 使用Pytorch安装N-Beats的命令: make install-pytorch 在GPU上运行 要强制使用GPU(带
1
时间序列聚类以及动态时间规整(DTW)距离的优化 具有各种策略的时间序列聚类以及针对动态时间规整(DTW)距离及其对应的下限(LB)的一系列优化。 既有传统聚类算法的实现,也有更新的过程,例如k-Shape和TADPole聚类。 使用自定义距离度量和质心定义可以轻松扩展功能。 此软件包中实现的许多算法都是专门为DTW量身定制的,因此得名。 但是,主要的聚类功能很灵活,因此可以直接使用时间序列或通过应用适当的转换,然后在结果空间中进行聚类,来测试许多不同的聚类方法。 软件包中包含的其他实现为DTW提供了一些替代方案。 想要查询更多的信息: (附录中带有示例) 实作 分区,层次和模糊聚类 k形聚类 基于形状的距离 时间序列的形状提取 TADPole聚类 DTW的优化版本 Keogh和Lemire的DTW下限 全局对齐内核(GAK)距离 DTW重心平均 软DTW(距离和质心) 一些多变量支
2022-01-11 22:59:03 6.99MB time-series clustering dtw R
1
《MultiBoot with 7 Series FPGAs and SPI》 7系列FPGA使用SPI Flash进行配置的指导手册。其中针对7系列的FPGA介绍了很多使用SPI Flash的细节,对要学习SPI的人很有参考意义。
2022-01-11 15:44:05 624KB FPGA SPI Flash
1
时间序列分析 经典教材 The fourth edition of this popular graduate textbook, like its predecessors, presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. Numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and monitoring a nuclear test ban treaty. The book is designed as a textbook for graduate level students in the physical, biological, and social sciences and as a graduate level text in statistics. Some parts may also serve as an undergraduate introductory course. Theory and methodology are separated to allow presentations on different levels. In addition to coverage of classical methods of time series regression, ARIMA models, spectral analysis and state-space models, the text includes modern developments including categorical time series analysis, multivariate spectral methods, long memory series, nonlinear models, resampling techniques, GARCH models, ARMAX models, stochastic volatility, wavelets, and Markov chain Monte Carlo integration methods. This edition includes R code for each numerical example in addition to Appendix R, which provides a reference for the data sets and R scripts used in the text in addition to a tutorial on basic R commands and R time series. An additional file is available on the book’s website for download, making all the data sets and scripts easy to load into R.
2022-01-07 17:37:44 9.84MB Time Series
1
网格-时空多维网格数据的信息学 Riley Hales开发了一个Python工具,用于从多维数据数组中提取时间序列子集,这是杨百翰大学土木与环境工程硕士学位论文的一部分。
2022-01-07 10:55:42 22KB time-series array raster spatial-analysis
1