在flash上有“permanent"和"dynamic"2块用于存储参数的区块。2块区域有相同的参数格式,但顾名思义,dynamic区块用于存储系统运行过程中的参数, 而permanent区块即起到NVRAM的作用,同于保存出厂配置参数,Vendor/MAC/WiFi参数等。
2022-01-26 11:00:40 939KB flash 参数 NVRAM DOCSIS
Programming Applications for Windows,英文版,中文名称windows核心编程
2022-01-21 10:06:28 5.75MB Windows
1
Computer Vision Principles, Algorithms, Applications, Learning。 Fifth Edition, 作者 E.R. Davies Royal Holloway, University of London, United Kingdom
2022-01-17 13:38:50 35.44MB computer vis machine visi
1
Understanding GPS Principles and Applications,Second Edition 《gps原理与应用,第二版》英文原版书籍。 Elliott D.Kaplan 著
2022-01-16 19:51:29 8.23MB Understanding GPS Principles and
1
这是一本有关人工神经网络及其应用的最新书籍,向对这种不断发展的机器学习技术感兴趣的读者提供了该领域的最新进展。
2022-01-16 16:28:37 138B 计算机科学
1
矩阵分解已经成为统计学的核心技术(Banerjee和Roy, 2014;、优化(Gill et al., 2021)、机器学习(Goodfellow et al., 2016);而深度学习在很大程度上是由于反向传播算法在拟合神经网络和低秩神经网络在高效深度学习中的发展。本调查的唯一目的是对数值线性代数和矩阵分析中的概念和数学工具进行一个完整的介绍,以便在后续章节中无缝地介绍矩阵分解技术及其应用。然而,我们清楚地认识到,我们无法涵盖所有关于矩阵分解的有用和有趣的结果,并且给出了这种讨论的范围的缺乏,例如,欧氏空间、厄米特空间和希尔伯特空间的分离分析。我们建议读者参考线性代数领域的文献,以获得相关领域的更详细介绍。一些优秀的例子包括(Householder, 2006; Trefethen and Bau III, 1997; Strang, 2009; Stewart, 2000; Gentle, 2007; Higham, 2002; Quarteroni et al., 2010; Golub and Van Loan, 2013; Beck, 2017; Gallier and Quaintance, 2017; Boyd and Vandenberghe, 2018; Strang, 2019; van de Geijn and Myers, 2020; Strang, 2021)
2022-01-14 09:20:08 3.12MB 矩阵分解
1
国外编码纠错的经典教材,介绍了分组码,卷积码等等,作者是SHU LIN/DANIEL J.COSTELLO,JR. 全英文,总共两部分,这里先上传一部分,另外一部分随后跟上 part1
2022-01-11 14:53:45 12.4MB Block code Converlutional code
1
时间序列分析 经典教材 The fourth edition of this popular graduate textbook, like its predecessors, presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. Numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and monitoring a nuclear test ban treaty. The book is designed as a textbook for graduate level students in the physical, biological, and social sciences and as a graduate level text in statistics. Some parts may also serve as an undergraduate introductory course. Theory and methodology are separated to allow presentations on different levels. In addition to coverage of classical methods of time series regression, ARIMA models, spectral analysis and state-space models, the text includes modern developments including categorical time series analysis, multivariate spectral methods, long memory series, nonlinear models, resampling techniques, GARCH models, ARMAX models, stochastic volatility, wavelets, and Markov chain Monte Carlo integration methods. This edition includes R code for each numerical example in addition to Appendix R, which provides a reference for the data sets and R scripts used in the text in addition to a tutorial on basic R commands and R time series. An additional file is available on the book’s website for download, making all the data sets and scripts easy to load into R.
2022-01-07 17:37:44 9.84MB Time Series
1
NET-Microservices-Architecture-for-Containerized-NET-Applications中文版 第二版
2022-01-04 11:24:03 13.05MB dotnet microservice .net
1