视觉系统实验室:在GPU上学习计算机视觉[自述文件未定期更新]
作者:Saikat Roy,
波恩大学CudaVision实验室(SS19)的存储库(主要)在PyTorch,Python3和Jupyter笔记本电脑上实现。 该项目从神经网络的基础开始,并延伸到更深层次的模型。 以下项目包含在相应的文件夹中:
项目1:Softmax回归(无autograd / Pytorch张量)
涉及使用softmax回归和手动梯度计算对MNIST数据集进行分类。 经过5次简单的迭代运行后,训练和测试集的准确度分别为0.8931和0.8866 。
项目2:多层神经网络
涉及在PyTorch上使用香草SGD进行简单的多层神经网络训练,并通过k倍蒙特卡洛交叉验证进行超参数(学习率和批量大小)搜索。 分类是在CIFAR-10数据集上完成的。 下面给出了在3072-128-128-10体系结构上进行50次
2022-04-10 21:39:44
14.94MB
系统开源
1