时序预测 | MATLAB实现ARIMA时间序列预测(完整源码和数据) 本程序基于MATLAB的armax函数实现arima时间序列预测; 实现了模型趋势分析、序列差分、序列平稳化、AIC准则模型参数识别与定阶、预测结果与误差分析过程,逻辑清晰。 数据为144个月的数据集,周期为一年,最终实现历史数据的预测和未来两年数据的预报!
时序预测 | MATLAB实现Elman神经网络时间序列预测(完整源码和数据) 数据为一维时序列数据,运行环境MATLAB2018b及以上。
时序预测 | MATLAB实现CNN(卷积神经网络)时间序列预测(完整源码和数据) 数据为一维时序列数据,运行环境MATLAB2018b及以上。
时序预测 | MATLAB实现BP神经网络时间序列预测(完整源码和数据) 数据为一维时序列数据,运行环境MATLAB2018b及以上。
2月22日打卡学习记录 一开始把Aliyun和Docker账号搞混了,出了很多模型奇妙的bug最后还是好不容易在最后关头跑通了。。太难了我的天。 通过pycharm终端构建图像 将图像推送到我的注册表 成功记录得分:-16 2月26日打卡学习记录 因为数据很多,所以我们使用tsfresh来生成功能,只是一个自动的功能工程,然后套入了模型。 后续思路是使用transformer来进行预测。
时序预测 | MATLAB实现SVM(支持向量机)时间序列预测(完整源码和数据) 数据为一维时序列数据,运行环境MATLAB2018b及以上。
timeseries-lstm-keras:基于Jason Brownlee教程,在Keras中使用LSTM递归神经网络在Python中进行时间序列预测
2022-05-21 13:23:01 239KB python deep-learning tensorflow scikit-learn
1
分别使用LSTM、ARIMA和Prophet三种时间序列预测算法实现单变量周期性数据的预测。
2022-05-16 11:17:48 2.48MB LSTM ARIMA Prophet 时间序列预测
1
LSTM-时间序列预测
2022-05-15 16:06:25 75KB lstm 源码软件 人工智能 rnn
利用数据挖掘技术分析外汇汇率时间序列,从时间序列中获得正确的、隐含的、潜在的信息对于金融领域研究具有重 要的现实意义。通过数据挖掘中的 ARIMA模型,以某银行的外汇汇率时间序列为研究对象,采用差分方法和建模规则,对 外汇的卖出价进行了建模与预测。通过与逐步自回归预测模型相比较,ARIMA模型对外汇汇率时间序列数据具有很强的 预测能力。
2022-05-09 23:06:05 928KB 工程技术 论文
1