神经网络与深度学习讲义20151211.pdf
2024-02-04 10:55:31 688KB 深度学习
1
主成分分析PCA降维,BP神经网络回归预测。PCA-BP回归预测模型。 多元回归预测 | Matlab主成分分析PCA降维,BP神经网络回归预测。PCA-BP回归预测模型 评价指标包括:MAE、RMSE和R2等,代码质量极高,方便学习和替换数据。要求2018版本及以上。 多元回归预测 | Matlab主成分分析PCA降维,BP神经网络回归预测。PCA-BP回归预测模型
2024-02-02 19:52:52 29KB 神经网络 matlab
1
自己编写并优化的贝叶斯模型,用于神经网络、机器学习或者数据分析、数据挖掘等领域的数学模型。是数据分析、Python程序设计、数学建模等课程作业的不二帮手! 语言为Python,在Python3.6~3.8均可运行,需要安装numpy
2024-02-02 09:24:48 1KB 数据分析 python 神经网络 机器学习
1
大学毕业设计 使用python基于opencv开发车牌识别系统,可以实现后台传输的图片识别 使用了两个相同结构的卷积神经网络 车牌识别系统可以分为两个部分, 第一个部分是车牌定位过滤部分; 第二个部分是字符识别部分; 在这两部分中我都是使用CNN卷积神经网络训练之后进行识别内容。 车牌定位部分使用的技术主要为图像预处理,车牌轮廓提取还有车牌的定位; 字符识别部分使用的技术主要为字符的分割,然后完成字符识别,输出车牌信息。 输入层:36x128 第一层卷积:卷积核大小:3x3,通道数:3,卷积核个数:32,激活函数使用Relu,四个维度的滑动步长为1,填充算法的类型:SAME。 第一层池化:使用池化窗口大小为2x2的最大池化,由于不想在batch(批量)同channels(通道)做池化,因此设置为1. 第二层卷积:卷积核大下:3x3,通道数为32,卷积核个数:64,激活函数使用Rule,四个维度的滑动步长为1,填充算法的类型:SAME。 第二层池化:同样使用池化窗口大小为2x2的最大池化,由于不想在batch(批量)同channels(通道)做池化,因此设置为1. 第三层卷积:卷积核大
2024-01-27 16:51:24 459.37MB opencv python 车牌识别系统 卷积神经网络
1
神经网络,做快速性能最优越的就属matlab来做了。 之前做matlab和C#的通讯都是:matlab做方法,编译成dll给C#调用。 但matlab的神经网络算法,无法做成dll给C#调用。 唯一办法是C#利用matlab引擎来做神经网络。 内有详细代码,和测试数据。分别区分0,1这两种数据。
2024-01-23 21:26:27 1.31MB matlab引擎 神经网络
1
matlab开发-利用工具箱实现神经网络的功能逼近。此代码实现了错误学习算法的基本反向传播
2024-01-23 20:03:27 119KB
1
通过粒子群算法对卷积神经网络结构的参数进行优化,最后在训练集和测试集上进行验证,效果比普通卷积神经网络的精度更高。粒子群算法可以有效高效地为卷积神经网络的超参数搜索提供方案。相比手动设计,粒子群算法通过模拟进化算法的方式,有望找到更佳结构。 粒子群算法可以用于卷积神经网络(Convolutional Neural Network, CNN)的优化。CNN是一种常用于图像识别、语音识别等领域的深度学习模型,它由多个卷积层、池化层和全连接层组成。CNN模型的优化需要调整的超参数很多,包括卷积核大小、卷积核数量、池化大小、学习率等等。因此,使用传统的梯度下降算法可能会陷入局部最优解,而粒子群算法则可以通过全局搜索来寻找更优的解。
2024-01-23 09:07:11 88KB
1
Maltab实现CNN卷积神经网络故障诊断(代码完整,可直接运行,适合2018及以上) 卷积神经网络(convolutional neural network)是具有局部连接、权重共享等特性的深层前馈神经网络,最早主要是用来处理图像信息。 相比于全连接前馈神经网络,卷积神经网络有三个结构上的特性:局部连接、权重共享以及汇聚,这些特性使得卷积神经网络具有很好的特征提取能力,且参数更少。 利用各种检查和测试方法,发现系统和设备是否存在故障的过程是故障检测;而进一步确定故障所在大致部位的过程是故障定位。故障检测和故障定位同属网络生存性范畴。要求把故障定位到实施修理时可更换的产品层次(可更换单位)的过程称为故障隔离。故障诊断就是指故障检测和故障隔离的过程。
2024-01-22 10:02:02 73KB 神经网络
1
梯度下降法(Gradient Descent)是机器学习和深度学习中最基本、最重要的优化算法之一。它被用于训练神经网络、拟合模型参数和解决各种问题。本博客将深入探讨梯度下降法的原理、不同变种、超参数调优和实际应用,帮助您全面理解这一关键概念。 目录 介绍 什么是梯度下降法? 为什么需要梯度下降法? 梯度下降法的原理 目标函数与损失函数 梯度的定义 梯度下降的基本思想 梯度下降的变种 批量梯度下降(Batch Gradient Descent) 随机梯度下降(Stochastic Gradient Descent) 小批量梯度下降(Mini-batch Gradient Descent) 超参数调优 学习率的选择 收敛条件 动量与学习率衰减 梯度下降的实际应用 线性回归 逻辑回归 神经网络训练 梯度下降的优化技巧 自适应学习率 Adam优化器 梯度下降的局限性 局部最小值问题 鞍点问题 总结与展望 梯度下降的优点 未来发展方向
2024-01-19 14:28:16 15KB 神经网络
1
matlab算法 智能算法30个案例 《MATLAB 神经网络30个案例分析》程序和数据 《10分钟学习Matlab GUI系列》视频教程 simulink MATLAB智能控制 MATLAB优化算法案例分析与应用《进阶篇》 MATLAB图像处理 MATLAB及其在理工课程中的应用指南数学篇课件 matlab超级学习素材 遗传算法理论及其应用研究进展 .pdf 0.8MB 遗传算法及其MATLAB程序.doc 1.3MB 遗传算法机理的研究.pdf 0.4MB 小波分析在心电信号去噪中的应用(内附Matlab去噪源代码).ppt 0.2MB 现代综合评价方法与案例精选.ppt 3.8MB
2024-01-18 10:55:46 54B matlab 神经网络
1