决策树(Decision Tree)是一种在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法。由于这种决策分支画成图形很像一棵树的枝干,因此得名决策树。在机器学习中,决策树是一个预测模型,代表的是对象属性与对象值之间的一种映射关系。 决策树的应用场景非常广泛,包括但不限于以下几个方面: 金融风险评估:决策树可以用于预测客户借款违约概率,帮助银行更好地管理风险。通过客户的历史数据构建决策树,可以根据客户的财务状况、征信记录、职业等信息来预测违约概率。 医疗诊断:医生可以通过病人的症状、体征、病史等信息构建决策树,根据不同的症状和体征来推断病情和诊断结果,从而帮助医生快速、准确地判断病情。 营销策略制定:企业可以通过客户的喜好、购买记录、行为偏好等信息构建决策树,根据不同的特征来推断客户需求和市场走势,从而制定更有效的营销策略。 网络安全:决策树可以用于网络安全领域,帮助企业防范网络攻击、识别网络威胁。通过网络流量、文件属性、用户行为等信息构建决策树,可以判断是否有异常行为和攻击威胁。
2024-04-29 13:18:26 108KB 机器学习
1
python离职预测模型python离职预测模型python离职预测模型python离职预测模型python离职预测模型python离职预测模型python离职预测模型python离职预测模型python离职预测模型python离职预测模型python离职预测模型python离职预测模型python离职预测模型python离职预测模型python离职预测模型python离职预测模型python离职预测模型python离职预测模型python离职预测模型python离职预测模型python离职预测模型python离职预测模型python离职预测模型
2024-04-29 12:54:07 120KB python
1
【优化预测】蝙蝠算法优化BP神经网络预测【含Matlab源码 1379期】.zip
2024-04-28 19:09:04 66KB
1
基于模型预测控制(MPC)无人驾驶汽车轨迹跟踪控制算法,基于MATLAB/simulink与carsim联合仿真,包含cpar,par,slx文件,支持MATLAB2018和carsim2019版本,先导入capr文件,然后发送到simulink,可支持修改代码,运用S-Function函数编写。 四轮转向汽车轨迹跟踪模型。 基于模型预测控制(MPC)无人驾驶汽车轨迹跟踪控制算法,基于MATLAB/simulink与carsim联合仿真,包含cpar,par,slx文件,支持MATLAB2018和carsim2019版本,先导入capr文件,然后发送到simulink,可支持修改代码,运用S-Function函数编写。 四轮转向汽车轨迹跟踪模型。
2024-04-28 14:08:31 629KB matlab carsim simulink 无人驾驶车辆
1
Python 深度学习 北京空气质量LSTM时序预测 tensorflow自定义激活函数hard tanh keras tensorflow backend操作 2010.1.2-2014.12.31北京空气雾霾pm2.5 pm10数据集 折线图loss下降趋势预测值真实值对比图 label encoder one hot min max scale 标准化 numpy pandas matplotlib jupyter notebook 人工智能 机器学习 深度学习 神经网络 数据分析 数据挖掘
2024-04-27 15:13:31 453KB Python 深度学习 tensorflow LSTM
1
包含Informer时间序列预测模型的论文源码和组会报告ppt Informer模型的主要特点包括: 多尺度时间编码器和解码器:Informer模型采用了一种多尺度时间编码器和解码器的结构,可以同时考虑不同时间尺度上的信息。 自适应长度的注意力机制:Informer模型采用了一种自适应长度的注意力机制,可以根据序列长度自动调整注意力范围,从而很好地处理长序列。 门控卷积单元:Informer模型采用了一种新的门控卷积单元,可以减少模型中的参数数量和计算量,同时提高模型的泛化能力。 缺失值处理:Informer模型可以很好地处理序列中的缺失值,使用了一种新的掩码机制,可以在训练过程中自动处理缺失值。 Informer模型已经在多个时间序列预测任务中取得了很好的效果,包括电力负荷预测、交通流量预测、股票价格预测等。 ———————————————— 版权声明:本文为CSDN博主「超级码猴k」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/qq_48108092/article/details/129
2024-04-26 15:34:05 2.79MB 深度学习 课程资源 时间序列预测
1
在这个项目中,我们将解决一个关于对进行个人贷款分类的问题。Thera-Bank的大部分客户都是存款人。同时也是借款人(资产客户)的客户数量相当少,银行有兴趣快速扩大这一客户群体,通过贷款利息来增加收入。特别是,管理层希望寻找方法将其负债客户转化为零售贷款客户,同时保持他们作为存款人。去年银行针对存款客户进行的一项活动显示了超过9.6%的转化率成功。这促使零售营销部门开发了更好的目标营销活动,以提高成功率并减少预算开支。该部门希望开发一个分类器,帮助他们识别更有可能购买贷款的潜在客户。 数据链接:https://www.kaggle.com/datasets/itsmesunil/bank-loan-modelling/
2024-04-26 14:16:16 7.22MB 数据挖掘
1
1.本项目采用百度地图API获取步行时间,基于GBDT模型对排队时间进行预测。实现用户自主选择多个目的地,系统输出最佳路线规划的结果,并根据用户的选择给出智能化推荐。 2.项目运行环境:需要Python 3.6及以上配置。 3.项目包括6个模块:数据预处理、客流预测、百度地图API调用、GUI界面设计、路径规划和智能推荐。选用GBDT建立模型,GBDT通过多轮迭代,每轮迭代产生一个弱分类器,每个分类器在上一轮的残差基础上进行训练;采用GBDT模型进行预测,输入当前天气、温度、风力风向、日期(是否是节假日、星期几)和时间即可得出当前客流量;当前客流量在后续预测排队时做一系列操作即可转换为排队时间;通过调用百度地图API模块产生节点之间的步行时间矩阵和客流模型,应用穷举法设计算法,得出最佳路线规划;系统将用户未选择的地点一次分别加入已选择的队列中进行运算,其基本思路与最佳路线规划模块一致,采用穷举法得到所有路线及其总耗时,最后将它们输出,实现智能推荐。 4.博客:https://blog.csdn.net/qq_31136513/article/details/133018114
2024-04-24 18:32:16 10.68MB 机器学习 python GBDT 最优路径
1
火焰识别 + yolov8 + 测试视频 + 预测权重.pt 资源包含: 1.预测权重 2.测试视频 直接下载后放入yolov8官方工程中,直接执行官方detect即可进行火焰识别
2024-04-23 19:23:17 91.76MB 目标检测 YOLO 火焰识别 计算机视觉
1
通过遗传算法GA来优化自抗扰模型的参数 以此来提高的优越性
2024-04-22 15:39:44 37KB ADRC
1