基于Google第二代人工智能学习系统TensorFlow构建神经网络对烟雾图像进行识别检测,通过改进的运动检测算法截取疑似烟雾区域图像,并结合PCA降维算法和Inception Resnet v2网络模型在TensorFlow平台下进行烟雾特征的训练识别。该算法实现了较大范围的火灾实时检测报警,经过实验证明整个检测过程准确地识别了视频流中的烟雾区域,相比于传统烟雾识别方法具有更高的准确率和自适应性,为大范围的火灾烟雾报警提供了一种有效方案。
2021-04-17 15:18:13 615KB 烟雾检测
1
这是基于matlab程序的一个研究,课题是“乐器识别”,其中应用了数字语音处理的技术,包括MFCC及LPC等等。
2021-04-12 17:50:33 1.11MB 乐器识别
1
基于langid模型的多语言微博识别研究
2021-03-29 18:11:41 2.28MB 研究论文
1
本文针对多模态情绪识别这一新兴领域进行综述。首先从情绪描述模型及情绪诱发方式两个方面对情绪识别的研究基础进行了综述。接着针对多模态情绪识别中的信息融合这一重难点问题,从数据级融合、特征级融合、决策级融合、模型级融合4种融合层次下的主流高效信息融合策略进行了介绍。
2021-03-25 14:16:57 4.42MB 多模态 情绪识别
1
数学形态学分形维数的船舶视频图像中识别研究_冉营丽 (1).pdf
2021-03-12 16:23:40 1.6MB 分类
1
对近年来人脸识别技术进行了广泛的调研
2021-03-04 11:11:29 44KB 人脸识别 深度学习
1
基于细粒度词表示的命名实体识别研究
2021-02-26 17:05:03 3.12MB 研究论文
1
采用激光诱导击穿光谱(LIBS)技术结合偏最小二乘判别分析(PLS-DA)对新疆、青海和俄罗斯的白色软玉进行产地研究。选取产自新疆(和田、于田、且末)、青海(格尔木)、俄罗斯(贝加尔湖)的146个白色软玉样品作为样品集,从样品集中随机抽取111个样品作为校正集,用于建立PLS-DA识别模型,剩余35个样品作为验证集,用于检验PLS-DA识别模型的预测效果。采用LIBS对三个产地的软玉样品进行成分分析,选择Na、K、Al、Li、Be、Mn、Sr、Zr、Ba、Y、Ce作为目标元素,并选取589.995,766.490,396.152,670.793,313.042,257.610,407.771,389.138,455.403,437.493,401.239 nm处的谱线作为目标元素的分析谱线,选取Si元素作为内标元素,以其在 288.158 nm处的谱线作为内标元素分析谱线,分别计算各目标元素与内标元素的谱线强度的比值Rx,由Rx组成自变量矩阵,用于模型的建立与预测。实验结果表明,采用LIBS结合PLS-DA建立的产地识别模型,其校正自变量和验证自变量与实际分类变量的相关系数都大于0.9
2021-02-24 14:04:19 5.55MB 光谱学 激光诱导 产地识别 偏最小二
1
基于深度学习的大蒜鳞芽朝向识别研究
2021-02-08 10:03:43 927KB 研究论文
1
语音情感特征的提取和选择是语音情感识别的关键问题,针对线性预测(LP)模型在语音情感谱包络方面存在的不足。本论文提出了最小方差无失真响应(MVDR)谱方法来进行语音情感特征的提取;并通过人工蜂群(ABC)算法找到最优语音情感特征子集,消除特征冗余信息;利用径向基函数(RBF)神经网络对CASIA汉语情感语料库中的4种情感语音即生气、平静、高兴、害怕进行实验识别。实验结果表明,该方法比线性预测法有更高的识别率和更好的鲁棒性。
1