可视化软件,UI非常友好 省去了Matlab编程的烦恼,极适合新接触BN的用户使用亲测好用,挺不错的资源,需要的人,就快来下载吧!很有用的!
2021-06-06 09:40:18 10.02MB 可视化
1
这本书主要是阐述传统的概率图模型的,对于现在火热的深度学习来说,正好。
1
贝叶斯网络
2021-06-03 01:09:28 7KB Python
1
在大数据时代,传感器网络,社交网络,互联网等不断且快速地生成大量数据。从大数据流中学习知识是一项重要任务,因为它可以支持在线决策。 预测是有用的学习任务之一,但是固定模型通常不能很好地工作,因为数据分布会随时间而变化。 本文提出了一种基于演化贝叶斯网络的流数据预测方法。 贝叶斯网络模型是基于高斯混合模型和EM算法来推导的。 为了支持基于流数据的演化模型结构和参数,提出了一种演化爬山算法,该算法基于到达新数据时分数度量的增量计算。 实验评估表明,该方法是有效的,并且优于流式数据预测的其他流行方法。
2021-06-03 01:07:22 1.1MB 研究论文
1
高斯核函数 数学表示 所谓径向基函数 (Radial Basis Function 简称 RBF), 就是某种沿径向对称的标量函数。 通常定义为空间中任一点x到某一中心xc之间欧氏距离的单调函数 , 可记作 k(||x-xc||), 其作用往往是局部的 , 即当x远离xc时函数取值很小。   最常用的径向基函数是高斯核函数 ,形式为 k(||x-xc||)=exp{- ||x-xc||^2/2*σ^2) } 其中xc为核函数中心,σ为函数的宽度参数 , 控制了函数的径向作用范围。
2021-05-31 17:33:00 7.57MB nonlocal mea 去噪 MRI
1
用python写的一段贝叶斯网络的程序 This file describes a Bayes Net Toolkit that we will refer to now as BNT. This version is 0.1. Let's consider this code an "alpha" version that contains some useful functionality, but is not complete, and is not a ready-to-use "application". The purpose of the toolkit is to facilitate creating experimental Bayes nets that analyze sequences of events. The toolkit provides code to help with the following: (a) creating Bayes nets. There are three classes of nodes defined, and to construct a Bayes net, you can write code that calls the constructors of these classes, and then you can create links among them. (b) displaying Bayes nets. There is code to create new windows and to draw Bayes nets in them. This includes drawing the nodes, the arcs, the labels, and various properties of nodes. (c) propagating a-posteriori probabilities. When one node's probability changes, the posterior probabilities of nodes downstream from it may need to change, too, depending on firing thresholds, etc. There is code in the toolkit to support that. (d) simulating events ("playing" event sequences) and having the Bayes net respond to them. This functionality is split over several files. Here are the files and the functionality that they represent. BayesNetNode.py: class definition for the basic node in a Bayes net. BayesUpdating.py: computing the a-posteriori probability of a node given the probabilities of its parents. InputNode.py: class definition for "input nodes". InputNode is a subclass of BayesNetNode. Input nodes have special features that allow them to recognize evidence items (using regular-expression pattern matching of the string descriptions of events). OutputNode.py: class definition for "output nodes". OutputBode is a subclass of BayesNetNode. An output node can have a list of actions to be performed when the node's posterior probability exceeds a threshold ReadWriteSigmaFiles.py: Functionality for loading and saving Bayes nets
1
提出了根据配电网的实际拓扑结构和元件对系统的影响关系直接建立贝叶斯网络以实现配电系统可靠性分析的方法。该方法的特点是不仅能进行配电网的可靠性指标评估,而且还能方便地得到系统每个元件或几个元件对整个系统可靠性的影响,从而克服了配电系统传统可靠性评估方法的不足。通过实例,阐述了应用贝叶斯网络方法进行配电系统可靠性评估的有效性和优越性。
2021-05-28 18:03:52 196KB 自然科学 论文
1
贝叶斯网络
2021-05-27 21:01:26 9.33MB 贝叶斯网络
1
人工智能-贝叶斯网络
2021-05-27 10:05:34 1.49MB 贝叶斯网络
em算法matlab代码主轴-HMM 复制所有结果,表格和纸图的代码 要求 MATLAB-结果,表格和图2 MATLAB R2016b或更高版本(实现的算法需要广播功能) 统计和机器学习工具箱 信号处理工具箱 并行计算工具箱(可选,但强烈推荐用于基于EM的学习) Python-图1 Python3 jupyter笔记本 matplotlib 绘制概率图形模型 数据 DREAMS睡眠纺锤数据集 指示 将“ Main_Code”文件夹添加到MATLAB路径 下载DREAMS睡眠纺锤数据集。 可靠的来源(请确保下载DatabaseSpindles.rar文件)。 解压缩.rar文件。 运行reformatDREAMS.m脚本以对EEG和专家标签进行格式化和降采样 现在即可运行“ DREAMS”文件夹中的算法/脚本。 这些是用于复制结果,表和图2的脚本 (可选)使用matplotlib和RARHSMM_GraphicalModel.ipynb设置python环境,以在jupyter笔记本上运行RARHSMM_GraphicalModel.ipynb PS1:所有主要代码都是MATLAB,pyt
2021-05-26 18:03:07 71KB 系统开源
1