略谈电力系统计算机信息网络安全.pdf
提高电力系统信息网络安全水平的探讨.pdf
表征学习为各种人工智能领域提供了一种革命性的学习范式。在本次调查中,我们研究和回顾了表征学习的问题,重点是由不同类型的顶点和关系组成的异构网络。这个问题的目标是自动将输入异构网络中的对象(最常见的是顶点)投影到潜在的嵌入空间中,这样网络的结构和关系属性都可以被编码和保留。然后可以将嵌入(表示)用作机器学习算法的特征,以解决相应的网络任务。为了学习表达性嵌入,当前的研究进展可以分为两大类:浅层嵌入学习和图神经网络。在对现有文献进行彻底审查后,我们确定了几个尚未解决的关键挑战,并讨论了未来的方向。最后,我们构建了异构图基准以促进对这个快速发展的主题的开放研究。
1
中科大 信息网络与协议 最新资料与课件
2021-08-30 14:00:09 31.08MB 信息网络 信息协议 中国科技大学 清晰
1
A Survey on Heterogeneous Graph Embedding: Methods, Techniques, Applications and Sources 异构图 (HG) 也称为异构信息网络,在现实世界中无处不在;因此,HG 嵌入旨在在低维空间中学习表示,同时保留下游任务(例如,节点/图分类、节点聚类、链接预测)的异构结构和语义,近年来引起了相当大的关注。在本次调查中,我们对 HG 嵌入方法和技术的最新发展进行了全面审查。我们首先介绍了 HG 的基本概念,并讨论了与同构图表示学习相比,HG 嵌入的异质性带来的独特挑战;然后我们根据他们在学习过程中使用的信息系统地调查和分类最先进的 HG 嵌入方法,以解决 HG 异质性带来的挑战。特别是对于每一种有代表性的HG嵌入方法,我们都进行了详细的介绍,并进一步分析了其优缺点;同时,我们还首次探索了不同类型的 HG 嵌入方法在现实工业环境中的变革性和适用性。此外,我们进一步介绍了几个广泛部署的系统,这些系统已经证明了 HG 嵌入技术在解决具有更广泛影响的实际应用问题方面的成功。为了促进该领域的未来研究和应用,我们还总结了开源代码、现有图学习平台和基准数据集。最后,我们探讨了 HG 嵌入的其他问题和挑战,并预测了该领域的未来研究方向。
1
探究如何实现PKI在电力系统信息网络安全中的应用.pdf
创业计划书-信息网络建设项目可行性研究报告
2021-08-25 17:00:07 145KB 资料
电子信息网络 (2).pdf
电子信息网络 (1).pdf
船载电子信息网络建模仿真研究.pdf