主题模型教程 此存储库包含简短教程“使用 Scikit-learn 进行主题建模”的笔记本、幻灯片和数据,该教程于 2017 年 9 月在发布。 内容 涵盖摘要教程。 有三个关联的 IPython 笔记本: :提供使用scitkit-learn预处理文档的基本介绍。 :涵盖了通过scitkit-learn提供的 NMF 实现对主题模型的应用和解释。 :关于使用主题一致性为 NMF 选择主题数量的更高级材料。 为了演示主题建模技术,一个示例数据集。 这包括 2016 年从收集的 4,551 篇新闻文章,存储在单个文本文件 (25MB) 中,每行一篇文章。 依赖关系 此代码已使用 Python 3.6-3.8 进行了测试。 核心包要求是: scikit 学习 麻木的 matplotlib 模型选择代码也依赖gensim包构建Word2Vec模型(用v4.0.1测试)。 示例数据集的
2022-03-04 13:05:11 13.91MB JupyterNotebook
1
ml-恶意软件分类器 参考 Daniel Arp, Michael Spreitzenbarth, Malte Huebner, Hugo Gascon, and Konrad Rieck "Drebin: Efficient and Explainable Detection of Android Malware in Your Pocket", 21th Annual Network and Distributed System Security Symposium (NDSS), February 2014 原始文件可以在找到。 原始数据集可在找到。 用法 该代码位于code文件夹
2022-03-02 16:36:57 5.44MB learning machine-learning machine scikit-learn
1
欢迎使用GitHub 安装 sudo apt-get install python-setuptools python-numpy python-scipy python-matplotlib python-pip -y sudo pip install numpy scipy matplotlib scikit-learn luminol 设置日志 您必须提供日志文件的位置才能运行此程序。 以下是任何Web服务器的日志格式 “%d-%b-%Y%T ::::%a ::::%m ::::%s ::::%B ::::%D ::::%U ::: :%r“ %d是日期 %b是月份 %Y是年份 %
1
scikit-learn : Machine Learning Simplified: Implement scikit-learn into every step of the data science pipeline By 作者: Raul Garreta – Guillermo Moncecchi – Trent Hauck – Gavin Hackeling ISBN-10 书号: 1788833473 ISBN-13 书号: 9781788833479 Release 出版日期: 2017-11-10 pages 页数: (530 )
2022-02-24 17:37:58 9.86MB Learning
1
学习 eo-learn使从卫星图像中提取有价值的信息变得容易。 通过哥白尼和Landsat计划获得的开放地球观测(EO)数据对于许多EO应用来说都是空前的资源,包括海洋和土地使用,土地覆盖监测,灾难控制,紧急服务和人道主义救济。 考虑到在高重访频率下的大量高空间分辨率数据,需要能够自动提取此类时空数据中复杂模式的技术。 eo-learn是开源Python软件包的集合,这些软件包已经开发出来,可以及时,自动地无缝访问和处理任何卫星机队获取的时空图像序列。 eo-learn易于使用,模块化设计并鼓励协作-在典型的EO值提取工作流程中共享和重用特定任务,例如云遮罩,图像共注册,特征提取,分类等。
2022-02-24 17:23:20 156.32MB machine-learning eo-data python-package eo-research
1
Road to learn React
2022-02-22 14:06:04 908KB react.js 前端 reactjs 前端框架
1
一部很经典的外文c++教材,内容:Welcome to Teach Yourself C++ in 21 Days! Today you will get started on your way to becoming a proficient C++ programmer. You'll learn Why C++ is the emerging standard in software development. The steps to develop a C++ program. How to enter, compile, and link your first working C++ program.
2022-02-21 19:23:26 682KB learn c++ in 21
1
Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems by Aurélien Géron English | 13 Mar. 2017 | ASIN: B06XNKV5TS | 581 Pages | AZW3 | 21.66 MB Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—scikit-learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use scikit-learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets Apply practical code examples without acquiring excessive machine learning theory or algorithm details
2022-02-18 16:55:25 21.66MB TensorFlow Scikit-Learn Machine Learning
1
叶识别 一个用于从叶子图像识别物种的python桌面应用程序。 使用图像处理和机器学习的概念。 它分为以下7种 槭树 雪松杜达拉 紫荆 柑桔 银杏叶 鹅掌 夹竹桃夹竹桃 要运行项目,请运行Executioner.py 有关更多详细信息,请参阅Project Details.pdf
2022-02-18 16:27:16 189.98MB opencv machine-learning scikit-learn image-processing
1
This is another good book on learning Qt5 very well
2022-02-11 15:12:16 4.23MB Qt Qml C++
1