多元时间序列 (MTS) 数据集广泛存在于众多领域,包括医疗保健、多媒体、金融和生物识别。 由于MTS是许多计算机视觉和模式识别应用中的重要元素,因此如何准确地对MTS进行分类已成为研究的热点。 在代码中,我们为 MTS 分类提出了基于马氏距离的动态时间规整 (MDDTW) 度量。 Mahalanobis 距离在每个变量与其对应的类别之间建立了准确的关系。 它用于计算 MTS 中向量之间的局部距离。 然后我们使用动态时间扭曲 (DTW) 来对齐那些不同步或长度不同的 MTS。 同时,我们使用基于 LogDet 散度的三元组约束(LDMLT)模型来学习具有高精度和鲁棒性的 Mahalanobis 矩阵。 此外,我们还演示了代码在 MTS 数据“JapaneseVowels”上的性能。
2022-06-27 14:45:31
888KB
matlab
1