标签转换器 在 Pytorch 中实现 ,表格数据的注意力网络。 这种简单的架构与 GBDT 的性能相差无几。 安装 $ pip install tab-transformer-pytorch 用法 import torch from tab_transformer_pytorch import TabTransformer cont_mean_std = torch . randn ( 10 , 2 ) model = TabTransformer ( categories = ( 10 , 5 , 6 , 5 , 8 ), # tuple containing the number of unique values within each category num_continuous = 10 , # number of co
1
所谓Attention机制,便是聚焦于局部信息的机制,比如图像中的某一个图像区域。随着任务的变化,注意力区域往往会发生变化。面对上面这样的一张图,如果你只是从整体来看,只看到了很多人头,但是你拉近一个一个仔细看就了不得了,都是天才科学家。图中除了人脸之外的信息其实都是无用的,也做不了什么任务,Attention机制便是要找到这些最有用的信息,可以想见最简单的场景就是从照片中检测人脸了。和注意力机制相伴而生的一个任务便是显著目标检测,即salientobjectdetection。它的输入是一张图,输出是一张概率图,概率越大的地方,代表是图像中重要目标的概率越大,即人眼关注的重点,一个典型的显著
1
针对乳腺钼靶图像中良恶性肿块难以诊断的问题,提出一种基于注意力机制与迁移学习的乳腺钼靶肿块分类方法,并用于医学影像中乳腺钼靶肿块的良恶性分类。首先,构建一种新的网络模型,该模型将注意力机制CBAM(Convolutional Block Attention Module)与残差网络ResNet50相结合,用于提高网络对肿块病变特征的提取能力,增强特定语义的特征表示。其次,提出一种新的迁移学习方法,用切片数据集代替传统方法中作为迁移学习源域的ImageNet,完成局部肿块切片到全局乳腺图片的领域自适应学习,可用于提升网络对细节病理特征的感知能力。实验结果表明,所提方法在局部乳腺肿块切片数据集和全局乳腺钼靶数据集上的AUC(Area Under Receiver Operating Characteristics Curve)分别达到0.8607和0.8081。结果证实本文分类方法的有效性。
2021-11-20 20:46:12 4.65MB 图像处理 乳腺钼靶 卷积神经 注意力机
1
驾驶员注意力分散检测:CS577:深度学习项目
2021-11-19 16:31:57 7.66MB JupyterNotebook
1
工商管理网 随附于NAACL2019论文代码和数据 开始吧 先决条件 这段代码是用python 3编写的。您将需要安装一些python软件包才能运行该代码。 我们建议您使用virtualenv来管理您的python软件包和环境。 请按照以下步骤创建python虚拟环境。 如果尚未安装virtualenv ,请使用pip install virtualenv进行pip install virtualenv 。 使用virtualenv venv创建一个虚拟环境。 使用source venv/bin/activate激活虚拟环境。 使用pip install -r requirements.txt安装软件包pip install -r requirements.txt 。 运行KBQA系统 从下载预处理的数据,并将数据文件夹放在根目录下。 创建一个文件夹(例如, runs/WebQ/
1
轴向注意 在Pytorch中实施。 一种简单而强大的技术,可以有效处理多维数据。 它为我和许多其他研究人员创造了奇迹。 只需在数据中添加一些位置编码,然后将其传递到此方便的类中,即可指定要嵌入的尺寸以及要旋转的轴向尺寸。 所有的排列,整形,都将为您解决。 实际上,这篇论文由于过于简单而被拒绝了。 然而,自那以后,它已成功用于许多应用中,包括, 。 只是去展示。 安装 $ pip install axial_attention 用法 图像 import torch from axial_attention import AxialAttention img = torch . randn ( 1 , 3 , 256 , 256 ) attn = AxialAttention ( dim = 3 , # embedding dimension
1
MTAN-多任务注意力网络 该存储库包含多任务注意力网络(MTAN)的源代码,以及来自Shikun , 和引入基线。 请参阅我们的项目页面的详细结果。 实验 图像到图像预测(一对多) 在文件夹im2im_pred ,我们提供了建议的网络以及本文介绍的NYUv2数据集上的所有基线。 所有模型都是用PyTorch编写的,并且在最新的提交中,我们已将实现更新为PyTorch 1.5版。 下载我们经过预处理的NYUv2数据集。 我们从使用预先计算的地面真实法线。 原始的13类NYUv2数据集可以使用定义的分段标签直接下载到。 很抱歉,由于意外的计算机崩溃,我无法提供原始的预处理代码。 更新-2019年6月:我现在发布了具有2、7和19类语义标签(请参阅本文以获取更多详细信息)和(反)深度标签的预处理CityScapes数据集。 下载[256×512个,2.42GB]版本 和[128×2
1
PyTorch中的快速批处理Bi-RNN(GRU)编码器和注意解码器实现 这段代码是用PyTorch 0.2编写的。 在PyTorch发行其1.0版本时,已经有很多基于PyTorch构建的出色的seq2seq学习包,例如OpenNMT,AllenNLP等。您可以从其源代码中学习。 用法:请注意有关注意力-RNN机器翻译的官方pytorch教程,除了此实现处理批处理输入,并且实现稍微不同的注意力机制。 为了找出实现方式在公式级别上的差异,下面的插图会有所帮助。 PyTorch版本机制图,请参见此处: PyTorch Seq2seq官方机器翻译教程: 巴赫达瑙(Bahdanau)注意图,请参
1
基于深度学习的方面情感分析是自然语言处理的热点之一。针对方面情感,提出基于方面情感分析的深度分层注意力网络模型。该模型通过区域卷积神经网络保留文本局部特征和不同句子时序关系,利用改进的分层长短期记忆网络(LSTM)获取句子内部和句子间的情感特征。其中,针对LSTM添加了特定方面信息,并设计了一个动态控制链,改进了传统的LSTM。在SemEval 2014的两个数据集和Twitter数据集上进行对比实验得出,相比传统模型,提出的模型的情感分类准确率提高了3%左右。
1
图像的均方误差的matlab代码经常注意模型 介绍 在过去的十年中,神经网络和深度学习在从计算机视觉到自然语言处理的各种应用中得到了快速发展。 随着计算的巨大改进,人们可以训练庞大而深入的神经网络来完成某些特定任务,例如Imagenet中的图像分类,通过RNN进行图像字幕,语义分割,对象检测,文本生成等。 现在,存在许多不同的神经网络功能。 但是,传统的CNN或多或少都面临着相同的问题:计算复杂性,可伸缩性,鲁棒性。 同时,神经网络也被引入到强化学习中,并在游戏中产生了巨大的成功。 里程碑是和。 这些成就使研究人员考虑了将强化学习算法与CNN结合以实现“注意力”机制的可能性。 这是循环注意力模型的动机,它是CNN,RNN和REINFORCE算法的混合体。 原始的创作论文为,在MNIST数据集中表现出色。 该模型可以大大减少计算量,并忽略图像中的混乱情况。 我花了很多时间和精力研究并在张量流中补充了该模型。 这就是该存储库的用途。 模型 本文的模型如下: 图例: 瞥见传感器:给定输入图像,瞥见位置和标度号以提取视网膜表示。 瞥见网络:两个完全连接的层,可在给定输入图像和瞥见位置的情况下输
2021-11-09 20:08:26 24.2MB 系统开源
1