传统的超分辨重建算法往往采用梯度下降法进行求解,迭代时步长往往通过经验确定。而且不同的图像的最优步长往往不相同。步长过大会导致发散,步长过小会导致收敛缓慢。本算法基于对正则化超分辨重建算法实现的基础上,对步长的选取进行了优化,推导出了每次迭代时的最优步长大小,并将其自适应化,改进了超分辨算法的收敛性,从而能够在更短的时间内取得更加精确的重建结果。相关具体内容请参考对应的论文:Yingqian Wang, Jungang Yang, Chao Xiao, and Wei An, "Fast convergence strategy for multi-image superresolution via adaptive line search," IEEE Access, vol. 6, no. 1, pp. 9129-9139.
1
改程序是用matlab编写的变步长LMS自适应滤波算法,并与其他的LMS算法做了比较
2019-12-21 18:54:18 4KB matlab 变步长LMS 自适应滤波算法
1
步长的LMS自适应滤波算法matlab程序 变步长的LMS自适应滤波算法matlab程序
2019-09-29 13:46:29 2KB matlab程序
1
该文档详细介绍加速度传感器的工作原理,以及如何通过加速度传感器获取的步频来计算行走的距离及速度。
2018-06-19 09:13:12 765KB Android sensor
1