本文主要对LSTM模型结构改进及优化其参数, 使其预测股票涨跌走势准确率明显提高, 同时对美股周数据及日数据在LSTM神经网络预测效果展开研究. 一方面通过分析对比两者预测效果差别, 验证不同数据集对预测效果的影响; 另一方面为LSTM股票预测研究提供数据集的选择建议, 以提高股票预测准确率. 本研究通过改进后的LSTM神经网络模型使用多序列股票预测方法来进行股票价格的涨跌趋势预测. 实验结果证实, 与日数据相比, 周数据的预测效果表现更优, 其中日数据的平均准确率为52.8%, 而周数据的平均准确率为58%, 使用周数据训练LSTM模型, 股票预测准确率更高.
1
在Cora和Citeseer数据集上用图卷积神经网络实现链路预测,包括GCN网络搭建、Cora和Citeseer数据集的数据预处理,以及链路预测网络的训练和测试代码。
2024-05-08 14:05:12 7KB Cora 链路预测 图卷积神经网络
1
针对半导体激光器工作温度随时间变化存在漂移和不稳定的问题,提出了基于遗传算法的半导体激光器温度控制系统.将单片机、铂电阻和TEC半导体制冷器分别作为系统的处理器、温度敏感器和温控执行器,通过遗传算法模型来分析被控对象的物理特性,利用遗传算法的快速搜索能力来训练温度控制的权系数,并对设计的系统进行实验验证.结果表明,该系统的温度控制精度为±0. 002℃,控制范围为5~70℃,超调量低于8%,能够实现高精度和宽范围的控制效果,具有较好的工程应用价值.
2024-05-08 13:07:50 812KB
1
基于深度学习的乒乓球目标检测与旋转球轨迹预测.pptx
2024-05-08 09:18:26 908KB
1
## 摘要 本报告旨在对 ISLR::Smarket 数据集进行分析,研究其中的股票市场走势,并建立预测模型。该数据集包含了2001年到2005年间的股票市场数据,涵盖了1250个观察值和9个变量。我们将通过探索数据、可视化分析和建立预测模型来深入理解市场的行为,并尝试预测未来的市场趋势。 ## 研究目的和背景 股票市场的走势和预测一直是金融领域的重要课题之一。了解市场的动态变化和构建准确的预测模型对投资者、交易员和金融机构都具有重要意义。因此,本研究的目的是通过分析 ISLR::Smarket 数据集,探索股票市场的走势并建立预测模型,以提供对未来市场走势的理解和预测能力。 ## 数据集 Smarket数据集是R语言中的ISLR软件包(Introduction to Statistical Learning with Applications in R)中的一个示例数据集。 Smarket 数据集包含了自2001年到2005年之间的日常股票市场数据。数据集中包含了1250个观察值和9个变量,其中包括: - Year:观察的年份(2001-2005)。
2024-05-05 12:58:00 428KB
1
产量预测数据集分享产量预测数据集分享
2024-05-04 10:40:45 458KB 数据集
1
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描视频QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-05-03 21:15:38 1.84MB matlab
1
本文深入探讨了如何利用深度学习技术对Python程序进行预测。我们将重点介绍CNN-GRU-Attention模型,这是一种结合了卷积神经网络(CNN)、门控循环单元(GRU)和注意力机制的先进模型。文章将从模型的理论基础出发,逐步引导读者理解其工作原理,并提供实际的代码示例,展示如何在Python中实现这一模型。内容适合对深度学习和自然语言处理有一定了解的开发者,以及对使用机器学习技术进行代码预测感兴趣的研究人员。 适用人群: - 机器学习工程师 - 数据科学家 - Python开发者 - 自然语言处理研究人员 使用场景: - 代码自动补全和预测 - 程序错误检测和调试 - 软件开发中的智能辅助工具 关键词 深度学习
2024-05-03 16:50:27 1.37MB python
1
多式联运基于遗传算法求解多式联运低碳路径规划问题matlab源码
2024-05-03 16:24:04 1.93MB matlab
1
案例系列:美国人口普查_预测收入超过50K_TabTransformer二分类 本示例演示了如何使用进行结构化数据分类,TabTransformer是一种用于监督和半监督学习的深度表格数据建模架构。TabTransformer基于自注意力的Transformer构建而成。Transformer层将分类特征的嵌入转换为强大的上下文嵌入,以实现更高的预测准确性。在这里,我们定义数据集的元数据,这些元数据对于读取和解析数据为输入特征以及根据其类型对输入特征进行编码非常有用。# 数值特征的名称列表"age", # 年龄"education_num", # 受教育年限。
2024-05-03 13:39:37 28KB transformer
1