library IEEE; Library UNISIM; use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_UNSIGNED.ALL; use IEEE.STD_LOGIC_ARITH.ALL; use UNISIM.vcomponents.all; entity pin_test is port ( rst_manu_h :in std_logic; clk_in :in std_logic; FPGA_CR2 :out std_logic; FPGA_CR1 :out std_logic; FPGA_PR :out std_logic; FPGA_TCK :out std_logic; test_out :out std_logic; FPGA_RST :out std_logic --LED : out std_logic_vector(3 downto 0) ); end pin_test; architecture rtl of pin_test is signal clk_div1 : integer range 0 to 2086; signal clk_div : std_logic_vector(27 downto 0); signal clk_div2 : std_logic_vector(27 downto 0); signal clk0 : std_logic; signal clk180 : std_logic; signal clk_180 : std_logic; signal clk2x : std_logic; signal CLKFX : std_logic; signal clk : std_logic; signal clkdv : std_logic; signal clkin_buf : std_logic; signal clk_sys : std_logic; signal reset : std_logic; signal TX_CLK : std_logic; signal tem1: std_logic; signal tem2 : std_logic; begin clk <= clkin_buf ; reset <= not rst_manu_h; CLK_DIVIDOR1:process(clk) begin if(clk'event and clk = '1')then if clk_div1=2086 then --clk_div1 <=(others=>'0'); clk_div1 <=0; else clk_div1<= clk_div1 + 1; end if; end if; end process CLK_DIVIDOR1; CLK_DIVIDOR:process(CLKFX) begin if(CLKFX'event and CLKFX= '1') then clk_div<= clk_div + 1; end if; end process CLK_DIVIDOR; CLK_DIVIDOR2:process(CLKFX) begin if(CLKFX'event and CLKFX = '0') then clk_div2<= clk_div2 + 1; end if; end process CLK_DIVIDOR2; tem1 <='1' when clk_div1 >2068 else '0'; tem2 <= clk or tem1; test_out <= CLKFX ; FPGA_CR2 <= not tem2; FPGA_CR1 <= clk or tem1; FPGA_PR <= clk_div(15); FPGA_TCK <='1' when clk_div1 >2068 else '0'; FPGA_RST <= clk_div(0)and clk_div2(0); ----------------------------------------------------------------------- -- This section contains clock manager. ----------------------------------------------------------------------- IBUFG_clock : IBUFG generic map ( IBUF_DELAY_VALUE => "0", -- Specify the amount of added input delay for buffer, "0"-"16" (Spartan-3E/3A only) IOSTANDARD => "DEFAULT") port map ( O => clkin_buf, -- Clock buffer output I => clk_in -- Clock buffer input (connect directly to top-level port) ); BUFG_clk_sys : BUFG port map ( O =>clk_sys, -- Clock buffer output I => CLK0 -- Clock buffer input ); BUFG_clk_fx : BUFG port map ( O => TX_CLK, -- Clock buffer output I => CLKFX -- Clock buffer input ); DCM_gnet : DCM generic map ( CLKDV_DIVIDE => 8.0, -- Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5 -- 7.0,7.5,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0 or 16.0 CLKFX_DIVIDE => 1, -- Can be any interger from 1 to 32 CLKFX_MULTIPLY => 2, -- Can be any integer from 1 to 32 CLKIN_DIVIDE_BY_2 => FALSE, -- TRUE/FALSE to enable CLKIN divide by two feature CLKIN_PERIOD => 0.0, -- Specify period of input clock CLKOUT_PHASE_SHIFT => "NONE", -- Specify phase shift of NONE, FIXED or VARIABLE CLK_FEEDBACK => "1X", -- Specify clock feedback of NONE, 1X or 2X DESKEW_ADJUST => "SYSTEM_SYNCHRONOUS", -- SOURCE_SYNCHRONOUS, SYSTEM_SYNCHRONOUS or -- an integer from 0 to 15 DFS_FREQUENCY_MODE => "LOW", -- HIGH or LOW frequency mode for frequency synthesis DLL_FREQUENCY_MODE => "LOW", -- HIGH or LOW frequency mode for DLL DUTY_CYCLE_CORRECTION => TRUE, -- Duty cycle correction, TRUE or FALSE FACTORY_JF => X"C080", -- FACTORY JF Values PHASE_SHIFT => 0, -- Amount of fixed phase shift from -255 to 255 STARTUP_WAIT => FALSE) -- Delay configuration DONE until DCM LOCK, TRUE/FALSE port map ( CLK0 => CLK0, -- 0 degree DCM CLK ouptput -- CLK180 => CLK180, -- 180 degree DCM CLK output -- CLK270 => CLK270, -- 270 degree DCM CLK output CLK2X => CLK2X, -- 2X DCM CLK output --100MHZ -- CLK2X180 => CLK2X180, -- 2X, 180 degree DCM CLK out -- CLK90 => CLK90, -- 90 degree DCM CLK output -- CLKDV => CLKDV, -- Divided DCM CLK out (CLKDV_DIVIDE) CLKFX => CLKFX, -- DCM CLK synthesis out (M/D) -- CLKFX180 => CLKFX180, -- 180 degree CLK synthesis out -- LOCKED => LOCKED, -- DCM LOCK status output -- PSDONE => PSDONE, -- Dynamic phase adjust done output -- STATUS => STATUS, -- 8-bit DCM status bits output CLKFB => clk_sys, -- DCM clock feedback CLKIN => clkin_buf, -- Clock input (from IBUFG, BUFG or DCM) -- PSCLK => PSCLK, -- Dynamic phase adjust clock input -- PSEN => '0', -- Dynamic phase adjust enable input -- PSINCDEC => PSINCDEC, -- Dynamic phase adjust increment/decrement --RST => rst_manu_h -- DCM asynchronous reset input RST => reset -- DCM asynchronous reset input ); end rtl
2022-11-22 11:10:17 2KB 时钟倍频
1
贯序数据输入,1clk完成数据排列的vhdl代码
2022-11-18 19:50:52 2KB 排列 vhdl
1
用vhdl语言在7位的数码管上显示按键的次数
2022-11-17 18:41:44 308KB VHDL key
1
文档讲解了怎样用vhdl写testbench
2022-11-17 14:53:05 13.77MB vhdl testbench
1
2022年正点原子新起点开发板代码
2022-11-13 20:29:59 1.64MB fpga
1
Zynq配置控制器 一种配置控制器解决方案,允许Zynq器件配置下游FPGA。 可以在上面的GitHub“发布”选项卡中找到此IP的正式版本。 ##概述此IP旨在安装到Xilinx Vivado / SDK工具中,使用户能够为Zynq器件创建一种配置一个或多个下游FPGA器件的方法。 该控制器是为7系列设备设计的,但是由于比特流格式的通用性,它也可以用于配置较早的FPGA。 随着设计变得越来越复杂并需要更多的设备,通常希望让一个Zynq SoC设备充当其他FPGA的配置控制器。 这种方法还允许对整个系统中的各种比特流使用统一的存储介质。 注意:此控制器不允许配置下游Zynq-7000设备。 这是因为除JTAG端口外,Zynq-7000设备没有“从”配置模式。 该库是使用创建的,但可能会与其他版本向前和向后兼容。 ## Xilinx配置模式根据电路板布局,所需的配置速度和I / O
2022-11-10 18:45:47 24.23MB VHDL
1
串口 VHDL中的简单UART实现 描述 非常简单,无缓冲的8位数据位,0位奇偶校验,1位停止位串行通信通道的实现。 通过分别设置I_clk_baud_count,应该能够在任何波特率下(有一定程度的错误): For a 50MHz I_clk: I_clk_baud_count := X"1458" -- 9600bps I_clk_baud_count := X"01B2" -- 115200bps To generate other timings, perform calculation: / = I_clk_baud_count 50000000 / 9600 = 5208 (0x1458) #输入/输出: SYS
2022-11-07 23:03:41 7KB VHDL
1
通用穿行通信控制器,可以直接使用,在quartsII下开发
2022-11-07 21:01:19 208KB vhdl_uart
UART控制器的vhdl和verilog源码
2022-11-07 20:17:59 145KB UART vhdl verilog
1
VHDL写成的UART,来自网络
2022-11-07 20:16:15 145KB UART VHDL
1